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Abstract of the Dissertation

Computer-aided cryptography is an emerging area of research concerned with
the application of formal methods and techniques from automated reasoning in
cryptography. It allows cryptographers to outsource tedious or error-prone tasks
to computers (including mundane parts of the analysis and validation of cryp-
tographic proofs, verifying complex calculations or exploring design spaces of
cryptographic constructions). Computer-aided cryptography has been success-
fully applied to the analysis of several primitives in classic public-key systems
and symmetric schemes. However, it is still not clear how automated meth-
ods can be applied to more recent and advanced constructions. In this thesis
we develop new techniques and tools to broaden the scope of computer-aided
cryptography, with special emphasis on pairing-based cryptography.

Our �rst contribution consists of a novel method (and an implementa-
tion) for automatically checking the security of cryptographic schemes (such as
structure-preserving signatures, message authentication codes or assumptions
de�ned over bilinear groups) in the generic group model, under strong standard
de�nitions of security. Our work improves on previous works, which consider
weaker security models. Our new approach allows us to reduce the security of
schemes to the absence of solutions to a system of constraints. We then de-
velop dedicated constraints-solving algorithms for testing that the systems are
unsatis�able.

Our second contribution focuses on attribute-based encryption (ABE). More
precisely, we present several new results about predicate encodings, a crypto-
graphic primitive that can be used to build ABE in a modular way. We propose
a purely algebraic formulation of the notion of privacy for predicate encodings,
that leads to several new applications, such as logical combinations of pred-
icate encodings and optimization techniques that resulted in improved ABE
constructions (with extra features and better performance).
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Our third contribution builds on the �rst two. We provide, for the �rst time,
computer-aided techniques and algorithms (plus an implementation) for auto-
matically proving the security of attribute-based encryption constructions in the
generic group model. Our method allows us to deal with indistinguishability-
based security de�nitions (as is required for ABE), which is a very important
achievement. Previous works on automated analysis mainly focused on compu-
tational security experiments instead.

As a last contribution we also study indi�erentiability of symmetric construc-
tions (such as di�erent variants of Feistel networks or Even-Mansour ciphers).
Unlike in our previous contributions, where our analysis was oriented towards
proof search, here we focus on formalizing and synthesizing attacks. We develop
methods for fully automated attack search. First, we formally de�ne the notion
of universal indi�erentiability distinguishers and provide methods for proving
the universality of candidate distinguishers. Then, we develop (and implement)
heuristics that take the description of a cryptographic component and try to
�nd a universal distinguisher for it.

All our contributions share a common methodology: we leverage techniques
from formal methods, expressing cryptographic constructions and security def-
initions in a symbolic language. We then provide computational soundness
theorems for such symbolic models that guarantee that the conclusions derived
symbolically can be lifted to the actual non-symbolic model. We demonstrate
the e�ectiveness of our approaches by developing several tools that implement
our techniques, which are then evaluated on a wide range of examples from the
literature. The results presented in this thesis expand the scope of computer-
aided cryptography, capturing stronger security notions and new settings.
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Resumen de la Tesis Doctoral

La criptografía asistida por ordenador es un área de investigación cada vez más
popular que estudia la aplicación de métodos formales y técnicas de análisis
automatizado a la criptografía. Permite que los criptógrafos deleguen en un
ordenador algunos cálculos tediosos y propensos a errores (por ejemplo, partes
rutinarias del análisis y validación de pruebas criptográ�cas, veri�car cálculos
complejos o explorar diferentes variantes de construcciones criptográ�cas). La
criptografía asistida por ordenador ha sido utilizada con éxito para el análisis de
varias primitivas, tanto en sistemas de clave-pública clásicos, como en sistemas
de clave simétrica. Sin embargo, todavía no está muy claro cómo se podrían
aplicar dichos métodos automatizados a las construcciones más recientes y avan-
zadas. En esta tesis se desarrollan nuevas técnicas y herramientas que amplían
el alcance de la criptografía asistida por ordenador, con especial énfasis en la
criptografía basada en pairings.

La primera contribución se trata de un nuevo método (con su correspon-
diente implementación) para comprobar la seguridad de esquemas criptográ�-
cos (como structure-preserving signatures, message-authentication codes o asun-
ciones de�nidas sobre bilinear pairings) de forma completamente automática y
garantizando niveles de estandarizados de seguridad. Primero, nuestro nuevo
método estudia cómo reducir la seguridad de dichos esquemas a la ausencia
de soluciones a sistemas de restricciones. Después, desarrollamos técnicas para
resolver dichos sistemas y demostrar que no admiten ninguna solución.

La segunda contribución se centra en attribute-based encryption (ABE). Más
concretamente, presentamos nuevos resultados sobre predicate encodings, una
primitiva criptográ�ca que se utiliza para construir ABE de manera modular.
Proponemos una caracterización puramente algebraica de la noción de privaci-
dad de los encodings, que da lugar a diversas nuevas aplicaciones: combinadores
lógicos de predicate encodings y técnicas de optimización que han resultado en
construcciones de ABE mejoradas (con nuevas propiedades y mejor e�ciencia).
Además, nuestra caracterización hace posible nuestros siguientes resultados.
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La tercera contribución construye sobre las dos primeras. Proponemos,
por primera vez en criptografía asistida por ordenador, técnicas y algoritmos
(además de una implementación) para demostrar automáticamente la seguri-
dad de construcciones ABE en el generic group model. Nuesto método permite
estudiar experimentos de seguridad basados en indistinguibilidad (como require
ABE), lo que supone un logro muy importante. Los trabajos anteriores sobre
análisis automático se centraban especialmente en experimentos de seguridad
computacional.

Como última contribución también estudiamos la noción de indiferenciabili-
dad en construcciones de clave simétrica (como por ejemplo, diferentes variantes
de Feistel networks o cifrados Even-Mansour). Al contrario que en nuestras
primeras contribuciones, donde nuestro análisis estaba orientado a la búsqueda
de demostraciones, aquí nos centramos en formalizar y sintetizar ataques. De-
sarrollamos métodos para automatizar la búsqueda de ataques. Primero, de�ni-
mos formalmente el concepto de distinguidor universal y proporcionamos méto-
dos para probar la universalidad de distinguidores candidatos. Después, desa-
rrollamos e implementamos heurísticas que toman como entrada la descripción
de una componente criptográ�ca y tratan de encontrar un ataque universal.

Todas nuestras contribuciones comparten una metodología común: utiliza-
mos técnicas de la teoría de métodos formales, expresando las construcciones
criptográ�cas y sus de�niciones de seguridad en un lenguaje simbólico. A con-
tinuación, proporcionamos teoremas que garantizan su validez computacional
de forma que las conclusiones obtenidas simbólicamente se puedan extrapolar
al modelo real sin símbolos. Además, demostramos la efectividad de nuestros
métodos a través de varias herramientas que implementan nuestras técnicas y
que han sido evaluadas en un amplio conjunto de ejemplos de la literatura. Los
resultados presentados en esta tesis amplían el alcance de la criptografía asis-
tida por ordenador, permitiendo el análisis de nuevas primitivas y garantizando
mejores nociones de seguridad.
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1
Introduction

Rerum omnium magister usus.
(Experience is the teacher of all things.)

Julius Caesar, BC 40

Computer assistance is an emerging practice in the design and veri�cation
of cryptographic primitives and protocols. Automated analysis contributes fa-
vorably to the development of cryptography and it is feasible in an increasing
number of subareas of this discipline.

In this thesis, we advance its feasibility in the framework of selected emerg-
ing cryptographic primitives such as Attribute-Based Encryption, Structure-
Preserving Signatures and others.

1.1 Cryptography

Cryptography has been a very powerful tool for humans throughout history.
One of the �rst documented uses of cryptography can be attributed to Julius
Caesar [183], who used to apply a very simple transformation to the written
commands he was transmitting by horseback messengers during the Gallic Wars.
This technique prevented the enemy from making sense of the crucial informa-
tion that was being transmitted in case the messenger was captured. However,
the legitimate receiver of the directive knew how to interpret the apparent non-
sense. The mentioned technique, known as the Caesar Cipher, is a very simple
example of an encryption scheme.

Many other examples of encryption schemes have been proposed and uti-
lized from ancient times: Substitution Ciphers (Caesar Cipher belongs to this
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class), that were vulnerable to frequency analysis; the Vigenère Cipher (for-
merly proposed by Giovan Battista Bellaso [56] in 1553), which was known as
the indecipherable cipher because it remained unbroken for three centuries until
a general method for deciphering it was discovered by Friedrich Kasiski in 1863;
the Enigma Machine, used in the Second World War and whose cryptoanalysis
gave rise to the birth of computers; and many others.

During centuries, cryptography has been all about encryption, as the main
concern was to achieve con�dentiality. Note that the etymology of �cryptogra-
phy� evidences that fact (from Ancient Greek, κρυπτ óς, kryptos or hidden; and
γράϕειν, graphein or to write). Nowadays, cryptography has other purposes
[79], trying to provide more functionalities such as accountability, auditability,
authenticity/trustworthiness, availability, integrity, non-repudiation or privacy.
All these services play an essential role in our lives. In fact, technology would
not have been developed in the same way without the existence of cryptography.
Over the last few decades, the human civilization has experienced an exponen-
tial progress, due to the massive demographic development and the birth and
adoption of computer systems in our daily life. The Internet, one of the great-
est advances in history, has changed the way we communicate, interact and
share knowledge, accelerating research and the development of science in gen-
eral. Nonetheless, many of the opportunities that these advances provide come
with serious security concerns and would not be possible without cryptogra-
phy: online-shopping or home-banking would be unfeasible through an insecure
channel (like the Internet) without compromising our personal information and
credentials; and many con�dential communications between di�erent parts of
the world would not be possible, slowing down many advances and discoveries.
Furthermore, cryptography is the meeting point of many disciplines (abstract
algebra, probability theory, complexity theory, geometry, etc) and brings new
challenges to all of them, favoring their development.

Nowadays, cryptography is treated in a much more rigorous way, through
the so-called provable-security paradigm. This paradigm enforces some security
requirements on the primitives, that are minutely studied, and the con�dence
about a speci�c construction is established through a formal proof of the fact
that it meets such requirements. Moreover, modern cryptography follows the,
very important, Kerckho�s's principle [136], proposed in 1883, which establishes
that the description of a cryptographic scheme should be publicly available and
everything about the system should be public knowledge except the secret key :
the only missing piece of information for a potential adversary, without which it
is unfeasible to perform a successful attack against the primitive. This principle
was reformulated by Shannon in 1949 [180]: �one ought to design systems under
the assumption that the enemy will immediately gain full familiarity with them�.

In the past, the mentioned maxims were not considered and cryptography
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used to rely on security by obscurity (primitives were relying on the secrecy of
their design, disregarding potential vulnerabilities or security �aws) or simply
on the absence of a practical attack known by the designers of the system. This
lack of formalism caused that every encryption scheme proposed throughout
history was eventually broken, and this fact probably inspired the following
words by the American writer (and cryptography lover) [166]

...it may be roundly asserted that human ingenuity cannot concoct a
cipher which human ingenuity cannot resolve...

Edgar Allan Poe, 1841

Note that Poe's words are applicable to the modern rigorous approach to
cryptography, which is not a complete guarantee of security:

‚ Modern cryptography relies on the hardness of certain well-studied prob-
lems (factoring large integers, computing the discrete logarithm over a
�nite group, lattice-based problems, etc) that are currently intractable.
If these problems are assumed to be hard to solve, the security of cryp-
tosystems can be proven under such hardness assumptions. However, the
progress of computer science could produce new algorithms for addressing
some of these problems in an e�cient way. Moreover, the development of
quantum computers [181] would threaten the hardness of many of these
problems and cryptography in general.

‚ Even when a cryptographic system is proven to be theoretically sound,
it might be susceptible to attacks when put into practice. Implemen-
tations are error-prone, engineers can make mistakes and unexpected
vulnerabilities might appear. Furthermore, even when these implemen-
tations are tested and validated they could still be vulnerable to other
exploits: side-channel attacks [95, 139, 140]. These attacks have been
successfully used for breaking actual cryptographic implementations of
theoretically sound algorithms by exploiting secret-dependent variations
of non-functional properties such as timing, power consumption, electro-
magnetic leaks, etc.

For the sake of security and to prevent such unexpected attacks, cryptogra-
phy needs to be constantly revisited and updated. Computer assistance plays an
important role in assuring the security of cryptographic primitives and verifying
the increasingly complex systems that our society demands.
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1.2 Computer Assistance

Over the years, the design and analysis of cryptographic systems has been per-
formed manually. Analyzing these systems to verify their validity and soundness
is far from being a trivial task and pen-and-paper calculations may be error-
prone, as witnessed by unfortunate failures [105, 128, 184].

Computer assistance has been successfully applied to many areas such as en-
gineering and production (architectural and industrial design), languages (au-
tomated translation), medicine (detection, diagnosis, surgeries), biology (DNA
sequencing, biotechnology), etc. In some of these disciplines, computer assis-
tance plays an essential role, while in others it helps scientists to accomplish
more complex achievements and facilitates several tedious tasks. If it has had
so much success in so many areas, why not applying computer assistance to the
�eld of cryptography?

Computer-aided cryptography [38] is an emerging approach that advocates
using automated tools based on formal methods for analyzing the security and
implementation of cryptographic schemes. The high level of assurance provided
by computer-aided cryptography is particularly important for cryptographic
schemes that are already deployed in real-world systems, such as RSA-OAEP
[55, 108] or TLS [96], but also for schemes that are required in many applications
and hold the promise of widespread deployment. One such example is provided
by Attribute-Based Encryption (ABE) [115, 174], a novel form of public-key
encryption (Public-Key Encryption). ABE supports �ne-grained access con-
trol on encrypted data and has many applications, including electronic medical
records [16], messaging systems [149], online social networks [31] information-
centric networking [129], etc. These applications make ABE an ideal domain
for computer-aided cryptography.

There exist two main paradigms in the framework of computer assistance:

Interactive Assistance. This paradigm is based on human-machine inter-
action for the development of formal proofs. It allows to formalize results for
which the user has a clear idea of how the desired proof looks like, or an intuition
about why the result to be proven is correct. The human-machine collabora-
tion prevents the user from making mistakes or taking wrong proof steps. There
exist many general purpose proof assistants (such as Coq or Isabelle) that al-
low to perform these tasks, usually with signi�cant e�ort from the user. Some
cryptographic primitives have been formalized in these systems, e.g., Barthe,
Cederquist and Tarento [39] use Coq to build machine-checked proofs of security
in the Generic Group Model (GGM). For another remarkable work on facilitat-
ing the analysis of cryptography under these proof assistants we refer to [165].
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The tools developed as a result of this work can be used interactively, following
this paradigm. Users can interact with the tools by introducing commands and
visualizing the missing goals to be proven. However, our work mainly focuses
on automated analysis.

Automated Analysis. Automated reasoning is an emerging practice in cryp-
tography. It helps scientists in the design and analysis of cryptographic systems.
Full automation is the ideal scenario, where the user just needs to describe the
cryptographic primitive, which is then analyzed in a completely automated way.
However, full automation comes at a price: the scope of the analysis needs to
be limited to certain class of primitives, e.g., the class of Structure-Preserving
Signatures (SPS) over bilinear groups. Research in this area tries to broaden
the number of cryptographic schemes that can be handled by automation.

One of the main advantages of automated analysis is trustability. Auto-
mated methods and tools to prove the soundness and reliability of cryptographic
systems can be thoroughly veri�ed once and for all. Once the theoretical ba-
sis of these methods and its implementation is veri�ed, they can be trusted
and applied to several di�erent instances. However, gaining the same level of
con�dence without automated methods would require a deep analysis for every
individual instance.

Automated analysis is very versatile. New techniques for automated rea-
soning can be built on earlier existing systems that are sound and reliable. For
example, new advances in computer-aided cryptography can bene�t from exist-
ing tools like SMT solvers [37, 94] or First-Order Theorem Provers [170, 178].
On the other hand, improvements on the analysis of cryptographic constructions
can be of independent interest in other areas of automated reasoning.

Automated analysis allows to approach the design of new cryptographic
primitives from a synthesis-based perspective. Having exploration tools that
generate several di�erent cryptographic schemes (of certain class) varying it-
erative parts of their structure, combined with automated analysis tools can
lead to the discovery of new cryptographic primitives with favorable properties.
This approach has been applied in practice, an example is the work by Barthe
et al. [44], where the authors explore synthesis in the framework of Structure-
Preserving Signatures and they �nd a new re-randomizable SPS scheme that
improves on existing schemes on size and e�ciency. Building catalogs of crypto-
graphic constructions with quantitative measures of their security and e�ciency
is an important direction of research.

Having tools for automatically deriving full or partial proofs is extremely
useful for the design of new cryptographic primitives. Users can focus on the
ingenious parts of the demonstration, which require human thinking, delegating
other parts to the computer. This practice not only prevents users form making
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mistakes along the most tedious details of the argument, but also allows them
to never lose the intuition behind the design, which can potentially lead to more
complex or interesting achievements. There is a remarkable work by Halevi [123]
where he discusses this idea of (informally) dividing proofs in two categories.

Most (or all) cryptographic proofs have a creative part (e.g., de-
scribing the simulator or the reduction) and a mundane part (e.g.,
checking that the reduction actually goes through). It often happens
that the mundane parts are much harder to write and verify, and it
is with these parts that we can hope to have automated help.

Shai Halevi, 2005

Furthermore, automated reasoning can be used to discover subtle �aws or at-
tacks that are not easy to visualize by intuitive reasoning.

Another advantage of automated analysis is that it brings cryptography
closer to non-experts. Cryptographic proofs are often technical and usually
require a strong background on mathematics and logic. Automated analysis is
a helper tool that broadens the community of researchers who can work in the
�eld and investigate new cryptographic primitives and techniques, potentially
leading to more e�cient constructions and better quality discoveries.

1.3 Research Questions

Computers are devices that can be instructed to perform sequences of operations
at a breakneck speed. Such a promising quality makes them an extremely
important component of many essential systems. It is understandable that we
try to take advantage of this important feature and involve computers in every
task of our lives. Many of these tasks are particularly suitable for the application
of computers: business accounting, managing inventories, processing images
and an innumerable amount of other examples. Note that all the mentioned
examples have something in common: they have a repetitive/predictable nature.
But, can computers be bene�cial for other more uncertain goals? If computers
are nothing more than automata which are instructed to perform speci�c tasks:

How can we program a computer to perform a task that we do not
even know how to complete?

There are examples of tasks that computers can perform without being ex-
plicitly programmed for (such as image recognition, email spam and malware
�ltering, videos surveillance, etc), many of them are the focus of the mentioned
machine learning techniques. However, analyzing cryptographic primitives is
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extremely challenging for automation. We cannot hope to �solve cryptography�
having a tool that analyzes every single cryptographic construction. One rea-
son is that cryptography is an evolving discipline: new notions, constructions,
techniques are constantly created and revisited. Furthermore, even though au-
tomation is an emerging practice, the number of primitives that nowadays can
be analyzed automatically is limited to certain classes of schemes:

Is there a likeness that characterizes the cryptographic constructions
that are amenable for automation?

In this thesis we investigate this idea, trying to answer to the previous
question. Roughly, we can conclude that automation is specially adequate to
prove security of primitives that can be expressed in a symbolic model. The �rst
step for automating the analysis of cryptographic primitives is building a model
in which the primitive can be expressed, usually, a model based on symbols
with an underlying algebraic structure or equational theory. Computers can
be programmed to decide notions about schemes expressed in these symbolic
models. We note that the symbolic model notion is frequently associated to
Dolev-Yao model, due to Needham and Schroeder [161] and Dolev and Yao
[99]. In such a model, primitives are represented by function symbols that are
treated as black-boxes. Extra equations may be added to the model to capture
algebraic properties of the primitives, but the model is said to assume perfect
cryptography in the sense that only the equalities that are explicitly given to the
model in form of equations hold. Our notion of symbolic model is slightly more
ambitious in the sense that we do not stop there. We try to give an answer to
the following question:

Can the conclusions derived about the symbolic representation of a
cryptographic primitive be extrapolated to actual security statements
about the construction?

Usually, cryptographic security experiments are probabilistic, e.g., every
probabilistic polynomial-time (p.p.t., for short) algorithm has a probability of
breaking the cryptographic construction that is upper-bounded by a negligible
function; while statements in symbolic models are deterministic, e.g., certain
system of constraints has or has not a solution. In our work we try to relate
both notions, achieving more realistic and meaningful results. We can say our
work is close to the line of work on automation of cryptographic proofs in both
the computational [88] and Dolev-Yao models, we refer to [59] for an overview
of these models.

Relating both models is commonly done ad hoc, i.e., a theoretical result
relating the symbolic experiments with the probabilistic experiments (the so-
called Master Theorem) is proven for every individual class of primitives. That
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is one of the reasons why, when considering such more realistic symbolic models,
automated analysis in cryptography is so segregated, every class of schemes
needs a model whose theoretical basis requires individual attention, which leads
to the question:

What characterizes the classes of primitives that admit a symbolic
model with its corresponding Master Theorem?

Describing the cryptographic primitives to be analyzed is another crucial
point in automated analysis. Automated tools usually take as input a �le where
the cryptographic primitive and the security notion to be proven are described.
It is desirable that the language for describing primitives is as rich as possible,
capturing a wide variety of schemes. However, as discussed above, automated
methods are limited. The expressivity of the language must be adequate to the
limitation of the model. If the language were too expressive, many cryptographic
schemes that could be captured by it, would not be handled by the automation,
which is undesirable. In that case we can say the language is not accurate. If
the automation can handle any instance expressed in the language, we say the
approach is complete.

How should the language for describing primitives be in order to
achieve a good trade-o� between expressivity and accuracy?

Developing automatic tools that are complete is immensely challenging.
Having complete tools is an intriguing line of research which has many ad-
vantages, e.g., one can prove qualitative/quantitative properties about classes
of schemes by exhaustive search.

In this thesis we try to broaden the scope of automated analysis in cryp-
tography, extending existing Master Theorems. This enlarges the number of
primitives that can be handled by symbolic models and improves the security
guarantees that can be proven about them.

1.4 Thesis Contributions

The main contribution of this thesis is on advancing the study of automated
methods for analyzing cryptographic constructions. In this section we provide a
high-level overview of our contributions. We refer to the corresponding chapters
for more details.

‚ Automated methods for stronger security guarantees in the GGM.
The gold standard in provable-security is to demonstrate security in the
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standard model. However, proofs in the standard model sometimes rely on
atypical hardness assumptions. In such situations, it is essential to prove
that the hardness assumptions used in the security proofs meet some mini-
mal requirements, for instance the absence of algebraic attacks. The accepted
method for validating new DDH-like assumptions is to show absence of generic
attacks, i.e., attacks that solely exploit the underlying algebraic structure, us-
ing the Generic Group Model (GGM) [156, 160, 172, 182] or its bilinear and
multilinear variants [43, 63].

The Generic Group Model provides an algebraic setting for describing a wide
class of DDH-like assumptions, and is supported by Master Theorems that
give a purely algebraic condition that ensures the security of an assumption
in the GGM (or its variants). The Generic Group Analyzer (gga) [43] is a
tool that assists proofs of security assumptions in the GGM, by automatically
checking the conditions of one of such Master Theorems.

New Master Theorem. The �rst main contribution of this thesis is to
extend the Master Theorem used by the gga to a general setting where ad-
versaries can make arbitrarily many queries to oracles with group inputs, and
where the winning conditions can be described using a rich language. As for
simpler Master Theorems, ours (Theorem 2) yields a su�cient condition for
the security of cryptographic constructions. However, this simpler condition
cannot be expressed in �nite-dimensional linear algebra: informally, each ad-
versarial query to an oracle taking group elements as inputs increases the
dimension of the system to be analyzed, and therefore allowing arbitrarily
many queries leads to a system that is not �nite-dimensional. As a conse-
quence, the algebraic approach of the Generic Group Analyzer cannot be used
to automatically evaluate su�cient conditions given by our Master Theorem.

New tool. The second main contribution of this work is an automated
method for proving the validity of these conditions, using a combination of
methods from constraint solving, computer algebra, and symbolic cryptogra-
phy. Building on these two contributions, we implement an analyzer that can
analyze many cryptographic constructions, including Digital Signatures and
message authentication codes.

We refer to Chapter 3 for more details on these contributions.

‚ Improving expressivity and e�ciency Predicate Encryption.

Predicate Encryption (PE) [66, 138] is a form of public-key encryption (PKE)
that supports �ne-grained access control for encrypted data. In PE, everyone
can create ciphertexts while keys can only be created by the master key owner.
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Ciphertexts are associated with descriptive values x in addition to a plaintext,
secret keys are associated with descriptive values y, and a secret key decrypts
the ciphertext if, and only if, Ppx, yq “ 1 for some boolean predicate P,
which is in stark contrast to traditional public-key encryption, where access
is all or nothing. Attribute-Based Encryption (ABE) is a special case of PE,
where x is associated to a set of attributes and y is associated to an access
policy. The simplest example of ABE is Identity-Based Encryption (IBE)
[64, 81, 179] where x and y are identities and P corresponds to equality. The
security requirement for ABE enforces resilience to collusion attacks, namely
any group of users holding secret keys for di�erent values learns nothing
about the plaintext if none of them is individually authorized to decrypt the
ciphertext. This should hold even if the adversary adaptively decides which
secret keys to ask for, as is inevitable in real-world scenarios.

Predicate encodings [76, 190] are symmetric primitives that can be used for
building Predicate Encryption and Attribute-Based Encryption schemes.

We pursue the study of predicate encodings and establish several general
results and new constructions that broaden their scope and improve their
e�ciency. Our results lead to expressivity and performance improvements on
state-of-the-art Predicate Encryption constructions.

Predicate encodings. We show that the information-theoretic de�nition of
α-privacy used in [76, 190] is equivalent to an algebraic statement (further-
more independent of α) about the existence of solutions for a linear system
of equations. Leveraging this result, we prove a representation theorem for
predicate encodings: every triple of encoding functions implicitly de�nes a
unique predicate for which it is a valid predicate encoding. Conversely, every
predicate P that admits a predicate encoding is logically equivalent to the
implicit predicate induced by its encoding functions. Moreover, our algebraic
de�nition of privacy simpli�es all our subsequent results.

First, we de�ne a generic optimization of predicate encodings that often leads
to e�ciency improvements and reduces the number of required group elements
in keys and ciphertexts. We prove the soundness of the transformations and
validate their bene�ts experimentally on examples from [76, 190]; we success-
fully apply our simpli�cations to reduce the size of keys and ciphertexts by
up to 50% and to reduce the number of group operations needed in some of
the existing encodings.

Second, we de�ne generic methods for combining predicate encodings. We
provide encoding transformations for the disjunction, conjunction and nega-
tion of predicates, and for the dual predicate (see De�nition 28).
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Tag-based encodings. We show that our results on predicate encodings
generalize to tag-based encodings. In particular, we give a purely algebraic
characterization of the hiding property of tag-based encodings. Moreover,
we demonstrate that the hiding property can be strengthened without any
loss of generality, by requiring equality rather than statistical closeness of
distributions.

Comparison of encodings. We compare the expressivity of the three core
primitives (predicate encodings, pair encodings and tag-based encodings) cor-
responding to the three di�erent modular frameworks. We provide an em-
bedding that produces an information-theoretical pair encoding from every
predicate encoding. Then, we use this encoding to compare our constructions
(of boolean combinations of predicate encodings) with similar constructions
for pair encodings that were introduced by [24].

In addition, we provide a transformation from tag-based encodings into pred-
icate encodings.

New constructions. We develop several new constructions of predicate
encodings and predicate encryption:

� Combining predicates. We show how to combine our results to
build Dual-Policy Attribute-Based Encryption (DP-ABE) [28, 30] in
the frameworks of predicate encodings and tag-based encodings (Sec-
tion 4.6.1.1). Additionally, we consider the idea of combining arbi-
trary encodings with a broadcast encryption encoding to achieve direct
revocation of keys. The former encoding takes care of revocation, while
the latter encodes the desired access structure.

� Improved predicate encodings. We provide new instances of pred-
icate encodings that improve on best known ones proposed in [76] and
have additional properties. (Section 4.6.2.1.)

� Extra features. Finally, we show how to construct a weakly attribute-
hiding predicate encoding for boolean formulas and how to enhance any
predicate encoding with support for delegation. (Section 4.6.3.)

Implementation and evaluation. We implement a general library for
predicate encryption with support for the predicate encoding and pair encod-
ing frameworks. Our library uses the Relic-Toolkit [21] for pairings with a
256-bits Barreto-Naehrig elliptic curve [36]. We use our library for validating
our constructions; experimental results are presented in the relevant sections.
Our scalability experiments show that predicate encodings can be used for
real applications.
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1. Introduction

‚ Automated methods for analysis of Attribute-Based Encryption.

We propose, implement, and evaluate fully automated methods for proving
security of ABE in the Generic Bilinear Group Model [63, 68]. Concretely,
we introduce the class of Rational-Fraction Induced ABE (RFI-ABE), which
includes many constructions from the literature, and prove for every ABE in
this class that their security in the GGM is equivalent to security in a sym-
bolic model, where the experiments are purely algebraic. Then, we introduce
a notion of symbolic security forRFI-ABE, and prove that every symbolically
secure RFI-ABE is secure in the symbolic model. Leveraging the fact that
symbolic security su�ces to conclude security of a Rational-Fraction Induced
ABE in the GGM, we develop a constraint-solving method for proving sym-
bolic security. Informally, the constraint-solving method can automatically
(dis)prove the existence of solutions for systems of (in)equations between ra-
tional fractions. We implement the constraint-solving method and use it to
evaluate several schemes, including schemes from the literature, various new
schemes of independent interest, and some subtly insecure schemes. Our tool
�nds automated proofs for most constructions, and attacks for the insecure
schemes.

En route, we prove a Master Theorem relating security in the GGM to security
in a symbolic model. The main technical di�erence with prior work is that our
Master Theorem handles rational fractions instead of polynomials [32, 33, 63].

Automated proofs. Our main theorem establishes that every RFI-ABE
which satis�es symbolic security is also secure in the GGM, and justi�es us-
ing automated methods for proving symbolic security. Informally, our notion
of symbolic security asserts the (non-)existence of a solution to a system of
equations between rational fractions; one speci�city is that these equations
may include so-called big operators, i.e., expressions of the form

řn
i“1 ei or

śn
i“1 ei, where n can take arbitrary values. Because neither symbolic com-

putation nor algorithmic veri�cation tools can deal with big operators (the
former do not support big operators and the latter operate on a bounded state
space), we develop constraint-solving methods that can successfully analyze
the systems of equations representing cryptographic constructions.

In contrast to prior works, the main novelty of our tool is to consider systems
of equations between rational fractions, rather than polynomial expressions.
We stress that our tool achieves soundness but does not constitute a decision
procedure; this means that our tool never makes mistakes but can sometimes
fail to produce an output.

12



1.4. Thesis Contributions

‚ Formal model for the analysis of indi�erentiability.

The framework of indi�erentiability was introduced by Maurer et al. in 2004
[157]. It extends the classical notion of indistinguishability and simpli�es the
analysis of cryptographic constructions. In particular, the indi�erentiability
of certain (real) cryptographic component C from another (ideal) component
R guarantees that the security of a cryptosystem depending on R is not
a�ected if R is replaced by C.
In this work, we propose, implement and evaluate automated methods for
analyzing cryptographic components in the framework of indi�erentiability,
with special emphasis on formalizing and automatically �nding universal dis-
tinguishers.

In particular, we introduce the notion of indi�erentiability under universal
algebraic attacks. A distinguisher is algebraic if performs operations from
a restricted class, in the spirit of the Generic Group Model [156, 160, 182]
and the Algebraic Group Model [107]. Roughly, we consider distinguishers
that are restricted to perform operations that are used as building blocks
of the cryptographic component, thereby, if a primitive is built based on
‘ of n-bit strings and permutations P : t0, 1un Ñ t0, 1un, distinguishers are
allowed to use these two operations, but they are not allowed to compute other
operations such as the bit-wise conjunction of two bit-strings, for example.
We review existing attacks from the literature and show that they fall into
the class of universal algebraic attacks.

In order to capture algebraic distinguishers, we de�ne a symbolic model of in-
di�erentiability and prove a Master Theorem which relates indi�erentiability
under universal algebraic attacks to symbolic indi�erentiability (for a simi-
lar notion of universal algebraic attacks). The main bene�t of the symbolic
model is that winning conditions are now expressed in purely algebraic terms.

We develop algorithms (decision procedures) for testing the universality of a
distinguisher. These algorithms leverage techniques from uni�cation theory
such as deductibility or static equivalence.

Tool. We implement our methods and evaluate their e�ectiveness on actual
case studies: Feistel networks, Even-Mansour ciphers, confusion-di�usion net-
works and others. Formalizing and corroborating known indi�erentiability
attacks.

Automated synthesis of attacks. As an independent contribution, our
framework can be used to automatically �nd indi�erentiability attacks on
various cryptographic primitives. We propose two di�erent heuristic meth-
ods in this direction and explore these approaches on primitives from the

13



1. Introduction

literature. In the case of 5-rounds Feistel networks we present a new attack,
with a di�erent structure to the one proposed by Coron et al. in [85] found
with our tool.

We believe our results complement other works in the framework of indif-
ferentiability. Our tool allows to formalize existing results (and potentially
new ones) gaining con�dence about their validity and extending the scope of
computer-assistance to this delicate and important topic in cryptography.

1.5 Thesis Organization

In Chapter 2 we introduce some relevant cryptographic notions and notations
and we present the Generic Group Model (GGM), the main cryptographic
model for security considered in this thesis.

Chapters 3 and 5 are devoted to describing techniques for proving the secu-
rity of cryptographic constructions in the GGM. Chapter 3 is mainly focused
on computational experiments over bilinear groups, covering primitives such
as Structure-Preserving Signatures (SPS) or Message Authentication Codes
(MAC). On the other hand, Chapter 5 is focused on decisional experiments,
with particular emphasis on Attribute-Based Encryption.

Chapter 4 presents results on predicate encodings, a building block for ABE.
More concretely, a new algebraic characterization of privacy of an encoding is
presented, which results crucial for the methods from Chapter 5. Due to this,
it is advisable to read Chapter 4 before reading Chapter 5. Furthermore, this
characterization allows to prove generic transformations and combinations of
predicate encodings, improving the expressivity and e�ciency of state-of-the-art
ABE constructions (we refer to Chapter 4 for more details about these results).

Chapter 6 focuses on the notion of indi�erentiability, with special focus on
automatically �nding attacks to the security of cryptographic components under
this security notion, as well as IND-CPA and IND-CCA attacks.

Finally, in Chapter 7 we present our conclusions and possible future research
directions.
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2
Preliminaries

Begin at the beginning and go on till you come to the end, then stop.

Lewis Carroll, 1865

In this section, we introduce some common notation used throughout this
thesis and some useful de�nitions. We also provide some background about
the Generic Group Model. More speci�c notation is used in the rest of this
document, which is described at the beginning of the chapter where it is used.

We note that the de�nitions related to the standard model (Section 2.2)
are not extremely important for the rest of this dissertation, but are useful to
illustrate the di�erences with the Generic Group Model.

Notation. We de�ne rns as the range t1, . . . , nu for an arbitrary n P N. For
�nite sets S, we use xÐ$ S to denote that x is uniformly sampled from S. We
denote byH the empty set or the empty list, depending on the context. For any
set or list S, we write |S| to denote its cardinality. For set S “ t1, 2, 3u, we abuse
notation and write pai, biqiPS to denote the tuple or vector pa1, a2, a3, b1, b2, b3q,
we extend this notation to arbitrary ordered �nite sets.

A positive function negl : N Ñ r0, 1s Ď R is called negligible if for every
polynomial ppxq P RrXs there exists a constant λ0 such that for every λ ě λ0

it holds neglpλq ă 1{ppλq. A function δ : N Ñ r0, 1s is said to be overwhelming
if the function 1´ δ is negligible.

By y Ð Apxq we denote a process of computation where algorithm A takes
x as input and outputs y. We denote by AOps,¨q, the fact that algorithm A has
oracle access to algorithm O, where O takes two inputs and has value s hard-
wired. Algorithm A can call O varying the second argument, getting the answer
by O where the �rst argument is always s (note that s is possibly unknown to
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2. Preliminaries

A). We naturally extend the above notation to multi-input algorithms, using
� ¨� for the accessible inputs.

We use λ to denote the security parameter. Very roughly, it is desired that
attacking secure cryptographic primitives requires an exponential time in λ. For
algebraic groups G of order n P N, we usually assume that n is a λ-bit integer,
i.e., 2λ´1 ă n ă 2λ.

2.1 De�nitions

2.1.1 Bilinear Groups

Bilinear groups or pairing groups are algebraic groups with an structure that,
roughly, allows to e�ciently compute multiplications in the exponent. Bilinear
groups have been used on countless occasions for developing simple, e�cient
and rich cryptographic constructions. A remarkable example is the celebrated
Boneh-Franklin Identity-Based Encryption [64], where the use of pairings al-
lowed the authors to solved an open problem proposed by Shamir in 1984 [179],
but there are many other primitives that cryptographers only know how to
construct by using bilinear groups.

De�nition 1 (Bilinear group). Let G1,G2,Gt be cyclic groups of order n P N
and let generators g1, g2 be generators of G1,G2 respectively. A bilinear group
is a tuple pn,G1,G2, g1, g2,Gt, eq, where e : G1 ˆG2 Ñ Gt is a map satisfying

epga1 , g
b
2q “ epg1, g2q

ab

for every a, b P N. It is required that the pairing be non-degenerate, i.e., epg1, g2q
generates Gt.

We frequently use implicit representation of group elements: for a P Zp
we write JaKs to denote the implicit representation of gas , element of Gs for
s P t1, 2, tu, following [101].

Groups G1 and G2 are known as the source groups, while Gt is called the
target group. In some cases, there exist additional isomorphisms between the
source groups and, according to this criteria, Galbraith et al. [109] classify
pairings in three di�erent settings:

‚ Type I: there exist an e�ciently computable isomorphism in both direc-
tions, Ψ1 : G1 Ñ G2 and Ψ2 : G2 Ñ G1. This setting is known as the
symmetric pairings, while the other two are known as asymmetric. In the
symmetric case, it is common to write G1 “ G2.
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‚ Type II: there exist an e�ciently computable isomorphism in one direc-
tion, i.e., Ψ : G2 Ñ G1.

‚ Type III: there are no (known) e�ciently computable isomorphism be-
tween the source groups.

It is common to assume that there exists a probabilistic polynomial-time
algorithm, GGen, that on input the security parameter 1λ, outputs the descrip-
tion of a pairing group G “ pn,G1,G2, g1, g2,Gt, eq of order n, where n P N is
a λ-bit integer. Throughout this thesis, we will assume n to be prime unless
otherwise stated.

2.1.2 Digital Signature Scheme

A Digital Signature is a cryptographic scheme designed to enforce the authen-
ticity of digital messages. It allows a veri�er to gain con�dence about the origin
of the message. To have the guarantee that it was created by a known sender
(authentication) and that the messages was not modi�ed or altered while be-
ing transmitted (integrity). It also prevents the sender from denying to have
produced the message (non-repudiation).

Digital Signatures have a tremendous importance in cryptography, they are a
versatile building block used in many cryptographic protocols and constructions
and in many countries, they have legal signi�cance.

A very important class of Digital Signature schemes is the class of Structure-
Preserving Signature schemes (SPS) [2], where the public key, messages and
signatures consist exclusively of group elements, what makes SPS schemes a
very useful building block for protocol design over bilinear groups. For exam-
ple, Structure-Preserving Signature schemes are typically combined with non-
interactive proofs, e.g., [54, 117, 119, 120, 135, 150, 151] to produce e�cient
Non-Interactive Zero-Knowledge proof systems (NIZK).

De�nition 2 (Digital Signature Scheme). A digital signature scheme is a tuple
of polynomial-time algorithms tSetup, Sign,Verifyu where:

‚ Setupp1λq Ñ ppk, skq is a probabilistic algorithm that, given a security
parameter λ, generates a veri�cation key pk and a signing key sk, and
outputs ppk, skq. The security parameter de�nes the message space M.

‚ Signpsk,mq Ñ σ is a probabilistic algorithm that, computes a signature σ
for input message m PM by using the signing key sk.

‚ Verifyppk,m, σq Ñ t0, 1u is a deterministic algorithm that, given a message
and a signature, outputs 1 for acceptance or 0 for rejection according to
the input.
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2. Preliminaries

Correctness

The signer, who owns the secret key sk can run the Sign algorithm to produce
a signature for certain message m. We require that the signature scheme be
correct, i.e., the veri�cation algorithm Verify must accept a genuinely generated
signature. More precisely:

De�nition 3 (Correctness of Digital Signatures). For the scheme to be correct,
it must hold that for all m PM, the probability

Pr

„

ppk, skq Ð Setupp1λq
σ Ð Signpsk,mq

: 1 “ Verifyppk,m, σq



is lower-bounded by an overwhelming function in λ.

Security

We also require the signature scheme be secure. Very roughly, even in the
presence of valid signatures for di�erent messages, it must be hard to produce a
signature that passes the veri�cation on a di�erent new message. More formally:

De�nition 4 (Unforgeability against Chosen-Message Attacks: EUF-CMA).
A signature scheme, SIG “ tSetup, Sign,Verifyu, is existentially unforgeable
against adaptive chosen-message attacks if the following advantage function is
negligible in λ for any p.p.t. adversary A:

AdvEUF-CMASIG,A pλq :“ Pr

„

ppk, skq Ð Setupp1λq
ppσ, pmq Ð AOskppkq

:
pm R Q ^

1 “ Verifyppk, pm, pσq



where Osk is an oracle that, given m, executes σ Ð Signpsk,mq, records m to
Q, and returns σ.

A weaker security notion is unforgeability against Random-Message Attacks
(EUF-RMA), where the adversary is allowed to get several genuinely-signed mes-
sages, but not of its choice. Speci�cally, the oracle the formal de�nition of this
notion would di�er from the one above only in the oracle Osk that would not
receive any input and on every call, it would internally sample some random
message r PM uniformly at random, compute σ Ð Signpsk, rq, add r to Q and
return signature σ.

2.1.3 Encryption Scheme

An Encryption Scheme is a cryptographic scheme designed to enforce the pri-
vacy. It is a mechanism that allows to hide a message in such a way that the
authorized receivers can access it, while unauthorized parties cannot extract
any information from the encoded message.

18



2.1. De�nitions

De�nition 5 (Public-Key Encryption Scheme, PKE). A public-key encryption
scheme is a tuple of polynomial-time algorithms tKeyGen,Enc,Decu where:

‚ KeyGenp1λq Ñ ppk, skq is a probabilistic algorithm that, given a security
parameter λ, generates a pair of keys ppk, skq, called the public key and
the private key respectively. The security parameter de�nes the message
space M.

‚ Encppk,mq Ñ ct is a probabilistic algorithm that takes a public key pk and
encrypts message m PM, producing a ciphertext ct.

‚ Decpsk, ctq Ñ m is a deterministic algorithm that takes as input a private
key sk and a ciphertext ct and outputs a message m P M or a special
symbol K.

Correctness

It is required that decryption under secret key sk of a ciphertext produced for
public key pk, be successful, if ppk, skq is a pair of keys generated by KeyGen.
More formally,

De�nition 6 (Correctness of Public-Key Encryption). For the scheme to be
correct, it must hold that for all m PM, the probability

Pr

„

ppk, skq Ð KeyGenp1λq
ct Ð Signppk,mq

: Decpsk, ctq “ m



is lower-bounded by an overwhelming function in λ.

Security

De�ning security for a public-key encryption scheme is far from trivial. One
would desire that the guarantees of security that the encryption provides are
such that, given a ciphertext, it is impractical to recover the original message.
However such a de�nition does not seem enough for having good guarantees of
privacy, especially in certain scenarios. Think of a situation where the num-
ber of possible plaintexts is small, for example, a situation in which a trader
performs buy/sell transactions via encrypted messages, so that her decisions
remain hidden except for the party that sells/buys the �nancial goods. An
eavesdropper may not be able to recover the original messages that are being
transmitted, however it may be able to distinguish between buy and sell orders,
which is de�nitely undesirable.

In 1982, Goldwasser and Micali proposed the notion of semantic security
[114], which was a breakthrough for the formal analysis and understanding of
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cryptography. In fact, these authors received in 2012 the ACM Turing Award
for such de�nition and other revolutionary contributions to the �eld of cryptog-
raphy. Roughly, an encryption scheme is said to be semantically secure if only
negligible information about the plaintext can be e�ciently extracted from a
given ciphertext. However, this semantic security is hard to be applied in cryp-
tographic proves. The same authors demonstrated that semantic security is
equivalent to a di�erent notion of security, known as indistinguishability against
chosen-plaintext attacks. This second de�nition is easier to adopt and deal with
and facilitates the security reductions in practice. In Section 2.2 we prove that
ElGamal encryption scheme satis�es this notion of security under the DDH
assumption (De�nition 16).

De�nition 7 (Indistinguishability against Chosen-Plaintext Attacks: IND-CPA). A
public-key encryption scheme, PKE “ tKeyGen,Enc,Decu, is indistinguishable
against chosen-plaintext attacks if the following advantage function is negligible
in λ for any p.p.t. stateful adversary A:

AdvIND-CPAPKE,A pλq :“ Pr

»

—

—

–

ppk, skq Ð KeyGenp1λq
m0,m1 Ð Appkq
βÐ$ t0, 1u; ct “ Encppk,mβq

pβ Ð Apctq

: pβ “ β

fi

ffi

ffi

fl

´
1

2

Intuitively, the adversary chooses two messages, m0 and m1 and it is given
the encryption of one of them at random. The encryption scheme is said to be
IND-CPA if the adversary cannot tell which message was encrypted (actually,
not much better than just guessing at random).

Note how strong this de�nition of security is. It guarantees that not even a
single bit of information is leaked from a ciphertext, even for messages that are
chosen by the attacker. Furthermore, observe that in many practical scenarios,
attackers will not choose the messages that are encrypted.

There are stronger notions of security where the adversary is allowed to
query decryption oracles, that decrypt ciphertexts of its choice, like IND-CCA:

De�nition 8 (Indistinguishability against Adaptive Chosen-Ciphertext Attacks: IN-

D-CCA2). A public-key encryption scheme, PKE “ tKeyGen,Enc,Decu, is indis-
tinguishable against adaptive chosen-ciphertext attacks if the following advan-
tage function is negligible in λ for any p.p.t. stateful adversary A:

AdvIND-CCA2PKE,A pλq :“ Pr

»

—

—

–

ppk, skq Ð KeyGenp1λq
m0,m1 Ð ADecpsk,¨qppkq
βÐ$ t0, 1u; ct “ Encppk,mβq

pβ Ð ADecpsk,¨qpctq

: pβ “ β

fi

ffi

ffi

fl

´
1

2
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It has been shown that the above de�nition is equivalent to non-malleability,
namely, for a scheme that is IND-CCA2, it is unfeasible to transform a given
ciphertext into another ciphertext which decrypts to a related plaintext.

Actually, this notion of security is one of the most accepted and desired for
encryption schemes.

2.1.4 Identity-Based Encryption

Identity-Based Encryption (IBE) is the simplest example of Attribute-Based
Encryption (see Section 2.1.5), introduced by [179]. It can be seen as an instance
of Predicate Encryption for the predicate Ppx, yq “ 1 i� x “ y, x, y P Zp.
In an Identity-Based Encryption scheme, a user, Alice, can send a message
to another user, Bob, by only considering some public parameters and Bob's
identity (a pre-existing identi�er, e.g., an email address), unlike traditional
public-key encryption, where Bob would need to communicate his public key
to Alice. In general, IBE simpli�es the key management of certi�cate-based
public-key infrastructure.

A major use case for IBE is email encryption, where it allows pairwise email
encryption, that is, Alice can send an encrypted email directly to Bob without
Bob's involvement. This technology is being adopted in real-life applications.
In fact, early IBE schemes are being standardized in IEEE P1363.3 and RFC
5091.

2.1.5 Attribute-Based Encryption

Attribute-Based Encryption (ABE) [174] is a form of of public-key encryption
that supports �ne-grained access control for encrypted data. In attribute-based
encryption, everyone can create ciphertexts while keys can only be created by
the master key owner. ABE schemes use predicates to model (potentially com-
plex) access control policies, and attributes are attached to ciphertexts or secret
keys. In the Key-Policy ABE (KP-ABE) version of Attribute-Based Encryp-
tion, keys are associated to access policies, while ciphertexts are associated to
sets of attributes. On the other hand, in the Ciphertext-Policy ABE (CP-ABE)
version, keys are associated to attributes, while ciphertexts are associated to
policies.

Predicate Encryption (PE) [66, 138] generalizes Attribute-Based encryption.
A predicate encryption scheme for a predicate P guarantees that decryption of
a ciphertext ctx with a secret key sky is allowed if, and only if, the attribute x
associated to the ciphertext ct and the attribute y associated to the secret key sk
verify the predicate P, i.e., Ppx, yq “ 1. Predicate encryption schemes exist
for several useful predicates, such as Zero Inner-Product Encryption (ZIPE),
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where attributes are vectors x and y and the predicate Ppx,yq is de�ned as
xJy “ 0. Predicate encryption subsumes several previously de�ned notions
of public-key encryption. For example, Identity-Based Encryption (IBE) [179]
can be obtained by de�ning Ppx, yq as x “ y. As mentioned before, Attribute-
Based Encryption (ABE) [174] can also be instantiated as a predicate encryption
scheme similarly. More concretely, for Key-Policy ABE, the attribute x is a
boolean vector, the attribute y is a boolean function, and the predicate Ppx, yq
is de�ned as ypxq “ 1. For Ciphertext-Policy ABE, the roles of the attributes
x and y are swapped.

The di�erences between Predicate Encryption and Attribute-Based Encryp-
tion are not very clear in the literature, however, it is accepted that PE subsumes
ABE. We can argue that in PE, x or y do not need to be sets of attributes or
policies, but can me more abstract objects. However, the main di�erent between
the PE and ABE is syntactical, in the sense that in PE, the Dec algorithm does
not require value x (associated to the ciphertext) as an input, unlike in ABE.
That opens the possibility of de�ning attribute-hiding PE schemes, where value
x is not only not provided for decryption, but it cannot be inferred from the
rest of the ciphertext ctx.

Attribute-Based Encryption and Predicate Encryption are increasingly be-
ing applied to many areas and recent e�ciency improvements make them fea-
sible for real-life applications [16, 31, 129, 149].

De�nition 9 (Attribute-Based Encryption). Given a predicate P : X ˆ Y Ñ

t0, 1u, an Attribute-Based Encryption scheme is tuple of polynomial-time algo-
rithms tSetup,Enc,KeyGen,Decu where:

‚ Setupp1λ,X ,Yq Ñ pmpk,mskq gets as input the security parameter λ, the
attribute universe X , the predicate universe Y. It outputs a master secret
key msk and a master public key mpk, de�ning the key space K.

‚ Encpmpk, xq Ñ pctx, κq takes as input mpk and an attribute x P X . It
outputs a ciphertext ctx and a symmetric encryption key κ P K.

‚ KeyGenpmsk, yq Ñ sky gets as input msk and a value y P Y returning a
secret key sky.

‚ Decpmpk, sky, ctx, xq Ñ κ gets as input sky and ctx such that Ppx, yq “ 1.
It outputs a symmetric key κ.

Correctness

An attribute Encryption scheme is correct if the decryption, of a genuinely
generated ciphertext, ctx with a valid secret key sky, holds whenever Ppx, yq “ 1.
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De�nition 10 (Correctness of Attribute-Based Encryption). For all x P X ,
and all y P Y such that Ppx, yq “ 1,

PrrDecpmpk, sky, ctx, xq “ κs “ 1´ neglpλq,

where the probability is taken over pmsk,mpkq Ð Setupp1λ,X ,Yq, and where
pctx, κq Ð Encpmpk, xq, sky Ð KeyGenpmpk,msk, yq.

Security

For security we require the scheme be such that, given a ciphertext ctx produced
from Enc, it is hard for an adversary to distinguish between the symmetric key
κ produced with ctx from a uniformly sampled symmetric key. Even in the
presence of secret keys sky (for values y such that Ppx, yq “ 0). More formally:

Adaptive security. For any stateful adversary A and security parameter λ,
we de�ne the advantage function:

AdvABEA pλq :“ Pr

»

—

—

—

—

–

pmpk,mskq Ð Setupp1λ,X ,Yq
x‹ Ð AKeyGenpmsk,¨qpmpkq
pctx‹ , κq Ð Encpmpk, x‹q

βÐ$ t0, 1u; K0 :“ κ; K1Ð
$ K

rβ Ð AKeyGenpmsk,¨qpctx‹ , Kβq

: rβ “ β

fi

ffi

ffi

ffi

ffi

fl

´
1

2

with the restriction that all queries y that A makes to KeyGenpmsk, ¨q must
satisfy Ppx‹, yq “ 0 (that is, the secret keys cannot directly decrypt the challenge
ciphertext).

De�nition 11 (Adaptive security of Attribute-Based Encryption). An ABE
scheme is adaptively secure if there exists a negligible function negl such that for
all p.p.t. adversaries A and all su�ciently large λ P N, AdvABEA pλq ď neglpλq.

Selective security. We also consider a weaker security notion than the one
above, that captures selective attacks, where the adversary selects a challenge
x‹ independently of its view. Namely, for any stateful adversary A and security
parameter λ, we de�ne the advantage function:

Advsel-ABEA pλq :“ Pr

»

—

—

—

—

–

x‹ Ð Ap1λq
pmpk,mskq Ð Setupp1λ,X ,Yq

pctx‹ , κq Ð Encpmpk, x‹q
βÐ$ t0, 1u; K0 :“ κ; K1Ð

$ K
rβ Ð AKeyGenpmsk,¨qpctx‹ , Kβq

: rβ “ β

fi

ffi

ffi

ffi

ffi

fl

´
1

2

with the restriction that all queries y that A makes to KeyGenpmsk, ¨q must
satisfy Ppx‹, yq “ 0.
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De�nition 12 (Selective security of Attribute-Based Encryption). An ABE
scheme is selectively secure if there exists a negligible function negl such that for
all p.p.t. adversaries A and all su�ciently large λ P N, Advsel-ABEA pλq ď neglpλq.

2.1.6 Monotone Access Structures

It is common to consider access structures that are monotonic. An access
structure f : X Ñ t0, 1u is said to be monotonic if there exists a partial order
ĺ on X such that

px ĺ x1q ^ fpxq “ 1 ñ fpx1q “ 1

Intuitively, if the elements of X are sets of attributes and we de�ne ĺ as the
set inclusion, having more attributes will never turn a monotonic formula from
1 to 0.

It can be shown that monotonic formulas are boolean formulas that are
formed with ^ and _ gates exclusively. The following is an algebraic character-
ization of monotonic formulas, widely used for building Predicate Encryption
schemes.

De�nition 13 (Access Structure [52, 137]). A (monotone) access structure for
attribute universe U is a pair pM, ρq where M P Z`ˆr`

p and ρ : r`s Ñ U . Given
Γ Ď U , we say that

Γ satis�es pM, ρq i� 1J P spanrowpMΓq,

Here, 1 :“ p1, 0, . . . , 0q P Zr` is a row vector; MΓ denotes the collection of vectors
tMj : ρpjq P Γu where Mi denotes the i'th row of M; and spanrow refers to linear
span of collection of (row) vectors over Zp.

Intuitively, Γ satis�es pM, ρq i� there exists constants ω1, . . . , ω` P Zp such
that

ÿ

ρpjqPΓ

ωjMj “ 1J

Observe that the constants tωiu can be computed in polynomial time in the size
of matrix M via Gaussian elimination.

2.2 Standard Model in Cryptography

The standard model in cryptography is the most widely used and accepted
model for provable-security. It consists of isolating speci�c hard problems and
proving the security of cryptographic constructions provided that the selected
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problems are actually hard. Nonetheless, unless new mathematical techniques
are developed and discovered, the hardness of such problems will need to be
assumed, in an act of faith, supported by the big e�orts and unsuccessful at-
tempts made by the research community on solving them. These widely used
hard problems are known as hardness assumptions.

2.2.1 Hardness assumptions

In this section we present some of the most widely used and better accepted
hardness assumptions. It is desirable to reduce the security of new crypto-
graphic primitives to the hardness of one of these problems. However, it is
common that in practice, new ad hoc assumptions are used for making such
security reductions. In such cases, it is crucial to validate the new assumptions.
The GGM (Section 2.3) is an ideal tool to gain con�dence about the algebraic
soundness of these unusual problems.

Computational problems are about calculating some values satisfying certain
properties, while decisional problems are about distinguishing between two or
more situations.

Computational assumptions.

De�nition 14 (Discrete logarithm, DLOG). Let G be a �nite group. The
discrete logarithm problem consists of, given g, h P G, �nding x P N such that
gx “ h.

The discrete logarithm problem is said to be hard for a group G if there
exists a negligible function negl such that for every p.p.t. algorithm A it holds

AdvDLOG
A :“ Pr r g, hÐ$ G; xÐ Apg, hq : gx “ h s ď neglpλq

where 2λ « |G|.

De�nition 15 (Computational Di�e-Hellman, CDH). Let G be a �nite group
or order n P N and let g P Gzt1Gu. Let a, b P N. The CDH problem consists of,
given g, ga, gb, computing gab.

The CDH assumption is said to hold for group G if there exists a negligible
function negl such that for every p.p.t. algorithm A,

AdvCDH
A :“ Pr

“

gÐ$ Gzt1Gu; a, bÐ
$ Zn; hÐ Apg, ga, gbq : h “ gab

‰

ď neglpλq

where 2λ « |G|.
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Decisional assumptions.

De�nition 16 (Decisional Di�e-Hellman, DDH). Let G be a �nite group of
order n P N and let g P Gzt1Gu. Let a, b P N. The DDH problem consists of,
given g, ga, gb and C P G, deciding whether C “ gab or not.

The DDH assumption is said to hold for group G if there exists a negligible
function negl such that for every p.p.t. algorithm A,

AdvDDH
A :“ Pr

»

–

gÐ$ Gzt1Gu; a, bÐ$ Zn;
C0 “ gab; C1Ð

$ G;

βÐ$ t0, 1u; rβ Ð Apg, ga, gb, Cβq
: rβ “ β

fi

fl´
1

2
ď neglpλq

where 2λ « |G|.
The DDH assumption has led to many e�cient cryptographic systems with

robust security properties. It has been an extremely important invention for
cryptography and, actually, Dan Boneh describes it as a gold mine [60].

Subgroup membership assumptions. There are many variants of sub-
group membership assumptions. They are all de�ned over groups of composite
order, where the order is usually a product of two or three �large� primes. The
problem states that it is hard for a polynomial adversary to classify a randomly
chosen group element in the di�erent subgroups that the group harbors.

De�nition 17 (A subgroup membership problem). Let G be a cyclic group of
order N P N, where n “ pq for p and q primes, and let g be a generator of G.
This subgroup membership problem consists of, given N , g and h P G, deciding
whether h has order p or it has order pq.

This subgroup membership assumption is said to hold for group G if there
exists a negligible function negl such that for every p.p.t. algorithm A,

AdvSMA :“ Pr

»

–

hÐ$ G;
h0 “ h; h1 “ hq;

βÐ$ t0, 1u; rβ Ð ApN, g, hβq
: rβ “ β

fi

fl´
1

2
ď neglpλq

where p and q are λ-bit primes. Observe that hq is always an element of the
subgroup of order p, while h is an element of the subgroup of order pq with
overwhelming probability. Note that factoring N would allow to recover the
correct β. Therefore, we say that this assumption is stronger than factoring;
or, to be very precise, we could say the assumption is not weaker than factoring.

Subgroup membership assumptions result extremely useful for making se-
curity reductions in the standard model. For example, the Petit IBE [191] has
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been proven adaptively secure in the composite order (under subgroup mem-
bership assumptions), but no alternative proof exists (so far) in the prime order
setting. In Chapter 5 we provide a proof of its generic security in the prime
order setting, found with our tool.

2.2.2 Example of proof in the Standard Model

ElGamal encryption scheme was created by Taher Elgamal in 1985 [100]. It
is a simple and elegant public-key encryption scheme that relies on the hard-
ness of computing discrete logarithms. In this section we show that ElGamal
encryption scheme is IND-CPA under the DDH assumption.

De�nition 18 (ElGamal encryption scheme). ElGamal encryption is given by
the following three algorithms:

KeyGenp1λq :
De�ne a group G
of prime order p « 2λ

Pick a generator g P G
vÐ$ Zp
pk :“ pG, g, gvq
sk :“ pG, vq
return ppk, skq

Encppk “ pG, g, V q,M P Gq :
rÐ$ Zp
ct :“ pgr,M ¨ V rq

return ct

Decpsk “ pG, vq, pct1, ct2q P G2q :
return ct2{ctv1

Theorem 1. If the Decisional Di�e-Hellman assumption holds, then for all
p.p.t. adversaries A the advantage AdvIND-CPAElGamal,Apλq is bounded by a negligible
function in λ.

Proof. We show that every adversary A attacking the IND-CPA experiment of
ElGamal can be transformed into an adversary B against the DDH problem
succeeding with a very similar probability as A (it fact, the advantage of B
is half the advantage of A). Because all e�cient adversaries against DDH are
assumed to have a negligible advantage, it must be that the advantage of A
against the IND-CPA of ElGamal is negligible.

Without loss of generality, we assume thatA always outputs a bit in the IND-
CPA experiment. Now, algorithm B is given an instance of a DDH problem,
say pg, ga, gb, Cq for certain group G, g P G and for some (unknown to B)
a, b P Zp and where C is either gab or uniformly random. Algorithm B simulates
the KeyGen algorithm by de�ning pk “ pG, g, gaq. It sends pk to algorithm A.
Eventually, A will reply back with two messages (two group elements)M0,M1 P

G. Now, B samples a bit βÐ$ t0, 1u and sends the ciphertext pgb,Mβ ¨Cq to A.
When A returns a bit rβ, B returns 0 (real, i.e., C “ gab) when rβ “ β, otherwise
it returns 1 (random).
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Note that, if C “ gab, the produced ciphertext would be distributed as
a genuine ciphertext. On the other hand, if C were selected at random, the
ciphertext pgb,Mβ ¨Cq would contain no information about β. That is because
for every M P G, the following distributions are identical:

UÐ$ G; returnU ” UÐ$ G; returnM ¨ U .

We have,

AdvDDHB pλq

“ Pr
“

β “ rβ |C “ gab
‰

Pr
“

C “ gab
‰

` Pr
“

β ‰ rβ |CÐ$ G
‰

Pr
“

CÐ$ G
‰

´
1

2

“

ˆ

AdvIND-CPAElGammal,A `
1

2

˙

Pr
“

C “ gab
‰

`
1

2
Pr

“

CÐ$ G
‰

´
1

2

“

ˆ

AdvIND-CPAElGammal,A `
1

2

˙

1

2
`

1

4
´

1

2

“
AdvIND-CPAElGammal,A

2

where Pr
“

β ‰ rβ |CÐ$ G
‰

was simpli�ed to 1{2 because, the input to A does
not contain any information about β and therefore, the sampling of β can be
delayed until rβ was chosen by A. l

2.3 Generic Group Model

The Generic Group Model is an idealized cryptographic model, �rst introduced
by Nechaev [160], that allows to prove the absence of e�cient attacks that do
not exploit the representation of the group.

In cryptography, especially in public-key cryptography, it is very common to
de�ne primitives over an algebraic group. For example, the RSA encryption
scheme is de�ned over a group of composite order N “ pq where p and q are
� large primes�, so that it is hard to factor N . In RSA, messages are group
elements and both encryption and decryption consist of taking exponentiations
in the group.

It is common to de�ne primitives for over such a group G, ignoring the group
implementation. In practice, this group needs to be carefully selected so that
it is hard to solve certain problems over it. Note that the representation of the
group plays an essential role when reasoning about the hardness of problems.
In particular, there are problems that are easy for certain representations and
intractable (with our current knowledge) for others.
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For example, the group of integers modulo p´1 for a prime p with the
addition, pZp´1,`q, is isomorphic to the group of positive integers modulo p with
the product, pZ˚p , ¨q. However, the discrete logarithm problem (De�nition 14)
is easy in the �rst representation and hard in the other. Note that for every
g, h P N, the discrete logarithm in the �rst representation is equivalent to solving
a linear congruence, gx ” h (mod p´1q, which can be e�ciently done by the
extended Euclid's algorithm. On the other hand, the best known algorithms for
solving the problem under the second representation are sub-exponential (Joux
et al. [35, 133]), therefore, the problem is considered intractable for groups of
su�ciently large cardinality.

Analyzing security in the Generic Group Model is asking whether certain
primitive can be attacked regardless of the representation of the group. An
attack that works for every representation is called generic and a primitive is
said to be generically secure if there are no p.p.t. generic attacks against it.

Generic attacks are restricted to basic group operations, such as the group-
law, equality checks and possibly some additional operations. There exist di�er-
ent models in the literature, that try to formalize this notion of generic attacks.
The most popular ones are the model by Shoup [182] and the one by Mau-
rer [156], which where proven to be equivalent [131].

In this thesis, we adopt Maurer's model, where groups are implemented by
a third party and group operations are done via oracle access to this implemen-
tation using handles.

2.3.1 Example of proof in the Generic Group Model

We illustrate the ideas behind Maurer's model by proving the generic security
of the CDH problem (De�nition 15).

In this section we will argue the generic hardness of the CDH assumption,
i.e., we will show that there does not exist a p.p.t. algorithm A, that solves
CDH with signi�cant probability for every implementation of group G.

For simplicity, let p P N be prime and let G be a group1 of order p. We
consider an oracle O that implements G by using an arbitrary representation.
More precisely, O samples g uniformly from Gzt1Gu and a, b uniformly from Zp.
It creates three handles, h1, h2, h3 pointing to g, ga, gb respectively and provides
A with these handles. Algorithm A is allowed to perform group operations, by
querying two handles and getting a new handle pointing to a group element that
corresponds to the sum of the contents of the provided handles. For example,
A can ask for the group-law operation on handles h1 and h3, O will see that
they contain g, gb and will return to A a fresh handle, h4, pointing to gb`1.

1We could say �let G be the group of order p�, because there exists only one (modulo
isomorphism), however, the group admits many di�erent representations.
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Additionally, A is allowed to perform equality checks, e.g., it can ask for a
comparison between handles h3 and h4 and O will answer back with �false�,
because the content of such handles is di�erent, i.e., gb ‰ gb`1.

In the so-called generic experiment, after several calls to the group operation
oracle and several equality checks, A will �nish the game by outputting a handle
h˚. Algorithm A wins the experiment if h˚ points to gab.

Now, consider a slightly modi�ed experiment, that we call symbolic experi-
ment, where the implementation of the group is done in a di�erent way. Instead
of creating pointers to group elements, the new oracle, Osym is creating point-
ers to polynomials in ZprA,Bs. In particular, the three original handles that
A receives, h1, h2, h3, point to polynomials 1, A,B respectively. When a group
operation is asked between two handles, Osym creates a new handle to the sum
of the polynomials corresponding to the content of the handles. On the other
hand, when an equality check is performed, the answer is given based on the
comparison of polynomials over ZprA,Bs.

Note that this modi�cation is imperceptible for A, i.e., if it were interacting
with Osym instead of O, A would not have a way of recognizing that situation,
except for a small detail: equality checks. It is possible that an equality check
holds in the generic experiment and not in the symbolic one2. For example, an
equality check between handles h2 and h3 could hold in the generic experiment
if it happened the unlikely event of sampling a and b equal, uniformly from Zp.
However, the same equality check does not hold in the symbolic experiment,
because polynomial A is di�erent from polynomial B. The only way for A to
distinguish between an interaction with O and an interaction with Osym is to
produce a bad event, that is, to perform an equality check that holds and should
not hold in the symbolic model (in that case A would know it is interacting with
O). Also, note thatA can predict by itself the equality checks from the symbolic
model and detect the previous situation.

It is common to relate the A's ability of winning the generic experiment to
the one of winning the symbolic experiment by the Schwartz-Zippel lemma.

Lemma 1 (Schwartz-Zippel). Let F be a �eld and f P FrX1, . . . , Xns be a non-
zero polynomial in the variables X1, . . . , Xn with coe�cients in F. Let d ě 0 be
the degree of f and let S be a �nite subset of F. Then,

Pr r r1, . . . , rnÐ
$ S : fpr1, . . . , rnq “ 0 s ď

d

|S|
.

Note that the lemma, applied to the �eld F “ Zp and set S “ Zp tells us that
the probability of any two linear polynomials in ZprA,Bs being instantiated to
the same value on uniformly sampled inputs is upper-bounded by 1{p.

2Note that the converse cannot happen, i.e., all equality checks that hold in the symbolic

experiment must hold in the generic experiment.
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Now, let A be an algorithm performing q group-law queries to its oracle
O (or Osymq. It will produce at most q ` 3 di�erent handles. In the case it
performed all possible equality checks between these handles, that would be
precisely pq`3qpq`2q{2 equality checks and therefore, by the union-bound, the
bad event happening is upper-bounded by pq ` 3qpq ` 2q{2p.

Finally, note that no algorithm can win the symbolic experiment, since all
operations preserve the degree of the polynomials stored in the handles. There-
fore, from handles pointing to 1, A,B, it is impossible to create a handle to
polynomial AB.

We conclude that any p.p.t. generic algorithm performing q group-law oper-
ations in G has a probability of solving the CDH problem that is upper bounded
by

q2 ` 5q ` 6

2p

which is negligible λ, where 2λ « |G| “ p, because q must be polynomial in λ.

2.3.2 Why use the Generic Group Model

Informally, a problem is said to be hard if no e�cient algorithm can solve it with
signi�cant probability. Algorithms are considered to be �e�cient� if they run
in polynomial time in the problem's size, while they are considered to succeed
with �signi�cant probability� when their probability of success is lower-bounded
by the inverse of some polynomial in the problem's size.

If a problem is hard, su�ciently large instances of the problem are intractable
with the existing algorithms, even with enormous computational power. There
are some problems believed to be hard and widely used in cryptography, e.g.,
factoring integers, computing the discrete logarithm over elliptic curves... How-
ever, proving lower complexity bounds for these problems is extremely chal-
lenging with our currently available mathematical knowledge. Actually, proving
meaningful lower bounds on the complexity of hard problems used in cryptogra-
phy would require to solve the Millennium Prize problem P vs NP, formulated
by Cook in 1971 [83], which results acutely di�cult, as evidenced by the lack
of progress in the last decades.

The GGM is a natural and well-de�ned framework that allows to prove
security of cryptographic constructions without relying on hardness assump-
tions. Note that the security level provided by a prove in the GGM is at most
as high as the security level that a proof in the standard model o�ers. That
is because, a proof in the standard model must rely on assumptions that are
generically secure and therefore, a proof in the standard model implies generic
security of the cryptographic primitive.
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It is common that proofs in the standard model rely on non-standard hard-
ness assumptions. In such cases, it is crucial to argue that these hardness
assumptions meet certain minimal requirements. The accepted method for
arguing the validity of such non-standard assumptions is to prove their security
in the Generic Group Model.

Additionally, note that for certain implementations of groups (like some
elliptic curves) it is unknown how to exploit the algebraic structure of the group
representation. In such situations, the best known algorithms for facing
certain problems are generic. When cryptographic primitives are implemented
in these groups, security in the GGM can be considered enough for practical use.

The GGM is an especially amenable framework for proving lower bounds
on the size and performance of secure cryptographic schemes. For example, it
has been applied to derive several lower bounds on the complexity of Structure-
Preserving Signatures [3, 6, 7, 44].

Finally, another incentive for considering the GGM is the fact that con-
structions in this model are usually smaller or more e�cient than secure
constructions in the standard model, where additional components are com-
monly needed to argue security. An example is the Petit IBE [191], which was
proven adaptively secure in the composite order setting of bilinear groups. The
additional structure that the composite order group provides makes it possible
to reduce the security of the Petit IBE to the hardness of a subgroup member-
ship assumption. However, without such a structure, the same argument does
not extend to the prime order case, which is preferable for size and e�ciency
reasons. In Chapter 5 we provide a proof of security of the prime-order ver-
sion of the Petit IBE in the Generic Group Model. Proving its security in the
standard model remains as an open problem. Structure-Preserving Signatures
are other example where constructions in the GGM are more e�cient. We refer
to [1, Table 1] for a comparison between lower and upper bounds for di�er-
ent classes of SPS schemes. For example, the authors show that secure SPS
schemes for bilateral messages in the Type III setting must contain at least 6
group elements in the signature to be proven secure in the standard model (un-
der non-interactive assumptions). On the other hand, there exist constructions
with only 3 group elements in the signature that achieve generic security.
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3
Unbounded Analysis of Constructions in

the Generic Group Model

Programming is the art of algorithm design
and the craft of debugging errant code.

Ellen Ullman, 2013

In this chapter, we develop a new method to automatically prove security
statements in the Generic Group Model as they occur in actual papers. We
start by de�ning a general language to describe security de�nitions, a class of
logical formulas that characterize how an adversary can win, and a translation
from security de�nitions to such formulas. We prove a Master Theorem that
relates the security of the construction to the existence of a solution for the
associated logical formulas. Moreover, we de�ne a constraint solving algorithm
that proves the security of a construction by proving the absence of solutions.

We implement our approach in a fully automated tool, the gga8 tool, and
use it to verify di�erent examples from the literature. The results improve on
the tool by Barthe et al. [43, 44]: for many constructions, gga8 succeeds in
proving standard (unbounded) security, whereas Barthe's tool is only able to
prove security for a small number of oracle queries.

3.1 Introduction

The Generic Group Model provides an algebraic setting for describing a wide
class cryptographic primitives and assumptions, and is supported by Master
Theorems that give a purely algebraic condition that ensures the security of
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primitives in this model. Very roughly, the proof of the Master Theorems uses
the Schwartz-Zippel lemma to prove a security reduction between the Generic
Group Model and a Symbolic Generic Group Model, in which the security ex-
periment is purely deterministic. Security in the Symbolic Generic Group Model
is trivially equivalent to a purely algebraic condition. For instance, the alge-
braic condition for a decisional assumption requires to prove that the two sets
of polynomials extracted from the left and right games have the same linear de-
pendencies. Therefore, and unavoidably, the di�culty of checking the algebraic
condition increases as the assumption becomes more complex, as witnessed by
unfortunate failures [105, 128, 185]. For some recent hypotheses, several pages
of error-prone calculations are required for proving that the algebraic condition
holds, and several authors have used computer algebra systems to carry part
of the veri�cations. These examples suggest the importance of building gen-
eral tools to assist proofs of security assumptions in the Generic Group Model.
One such tool is the Generic Group Analyzer [43], which uses SMT solvers and
computer algebra systems to analyze DDH-like assumptions. The tool takes as
input a description of an assumption and either returns an algebraic attack or a
concrete probability bound if the assumption is secure. The Generic Group An-
alyzer primarily works for non-interactive assumptions, in which the adversary
can only call the oracles which perform the algebraic operations.

The Generic Group Model can also be used for proving the security of crypto-
graphic constructions, such as Digital Signature schemes and algebraic Message
Authentication Codes, against algebraic attacks. In this context, the adversary
has access to oracles for performing signatures, veri�cation, etc. The Generic
Group Analyzer also provides support for such problems, but is inherently lim-
ited to oracles which do not take handles to group elements as inputs. This
support can be used for analyzing simple interactive assumptions. Subsequent
extensions of the Generic Group Analyzer overcome this limitation by providing
support for oracles that take handles as inputs, and by allowing adversaries to
make a bounded number of oracle queries [44]. Using this extension, Barthe
et al. [44] synthesize (in the Type II setting) structure-preserving signatures
that are secure against adversaries that can make a bounded number of signing
queries. Their approach is based on an algebraic characterization of security, us-
ing a vector space whose dimension increases by one for each query. Therefore,
their approach is limited to a small number of queries, and an alternative ap-
proach must be used for proving security notions which do not impose a bound
on the number of queries.

Building on these two contributions, we implement an analyzer which sub-
sumes the Generic Group Analyzer for interactive assumptions and is able to
analyze many cryptographic constructions, including signatures and message
authentication codes.
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3.1.1 Technical overview

In more detail, our contributions are as follows.
First, we de�ne a language to express security experiments in the Generic

Group Model where the adversary can make an unbounded number of queries
to oracles; moreover, our model allows oracles to take group values as inputs.
In addition, we de�ne a rich language of winning conditions. We then establish
a Master Theorem, which states that a generic algorithm is secure with respect
to a security goal expressed using our language of winning conditions, if the
constraint system extracted from the security experiment, given by the algo-
rithm and the winning condition, has no computable solution. Informally, the
notion of computable solution provides an algebraic counterpart to the notion
of deducibility used in the symbolic (a.k.a. Dolev-Yao) approach to cryptog-
raphy; more technically, this notion is based on an inductive de�nition of the
adversary's knowledge throughout execution of the algorithm. From a broader
perspective, our Master Theorem provides a novel light on the relationship be-
tween di�erent cryptographic models, by showing a general relationship between
the Generic Group Model and the symbolic model. Note that, for the sake of
simplicity, we focus on group settings with bilinear pairings; however, we be-
lieve that our model and Master Theorem can naturally extend to the case of
multilinear maps.

Second, we de�ne an automated method for proving the absence of com-
putable solutions of constraint systems. Our language of constraints supports
algebraic expressions that are generally not considered by prior work on the
symbolic model. Therefore, we cannot use previous constraint-solving methods
developed for reasoning about cryptographic protocols in the symbolic model.
Rather, we de�ne a specialized method which combines general purpose al-
gebraic computations and specialized steps. The algebraic computations are
performed using Gröbner bases, whereas the specialized steps include simpli�-
cations related to big operators and case distinctions. The latter can be used
to add new equations to constraint systems and thus to trigger new simpli-
�cations. Case distinctions are an essential ingredient for the success of our
method: they yield compact proofs that follow the structure of pen-and-paper
arguments found in the literature. Of course, the use of case distinctions is
not new in automated deduction; it is at the core of Staalmarck's method, an
empirically successful method for propositional logic. However, its use in our
setting appears to be new.

Third, we implement our method and evaluate its e�ectiveness on a sizable
set of case studies. Our tool uses o�-the-shelf computer algebra systems to
perform Gröbner bases computations. However, it draws its e�ciency from a
�nely tuned heuristics for carrying case distinctions. We evaluate our tool on
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structure-preserving signatures, in all settings (Type I, Type II and Type III).
Our tool is able to prove unbounded security of many structure-preserving
signatures from the literature, as well as of the algebraic MACs from Chase,
Meiklejohn and Zaverucha [74], and of the short randomizable signatures from
Pointcheval and Sanders [167]. Furthermore, it also proves unbounded secu-
rity for most of the examples proved 2-time secure in [44] (these examples were
generated automatically using synthesis techniques). Moreover, we also adapt
the synthesis tool from [44] to generate structure-preserving signatures in the
Type III setting and use our tool to prove security for more than a 100 such
schemes.

3.1.2 Related work

The Generic Group Model was introduced by Nechaev [160], Shoup [182] and
Maurer [156], following distinct but equivalent approaches [131]. The original
approach by Nechaev and Shoup lets the adversary access a randomly selected
representation of group elements; in contrast, Maurer's approach requires the
adversary to perform all algebraic operations via oracles, and uses handles as
symbolic representations of group elements known to the adversary. We opt
for the second approach, for its distinctively symbolic �avour. These works
establish lower complexity bounds for the generic discrete logarithms and the
generic hardness of Di�e-Hellman like assumptions. As for us, they use the
Schwartz-Zippel lemma for transforming their original problem into an alge-
braic one. This approach was extended by Boneh, Boyen and Goh [63]. First,
their Generic Group Model focuses on bilinear groups. Second, they consider a
general class of assumptions, and provide the �rst Master Theorem, which pro-
vides a systematic method for extracting algebraic conditions of security from
assumptions. Their Master Theorem was subsequently extended in many direc-
tions. The most relevant works are those that involve the use of computer tools
for verifying algebraic conditions. Notably, Freeman [104] veri�es the hardness
of two assumptions using Magma.

Shoup [182] and Schnorr and Jakobsson [176, 177] were among the �rst to use
the Generic Group Model for proving the security of crytographic constructions.
Speci�cally, Shoup proves (generic) security of an identi�cation scheme, whereas
Schnorr and Jakobsson consider signed ElGamal encryption and blind discrete
log signatures. More recently, the Generic Group Model has also become an
important tool for analyzing the security of pairing-based cryptographic con-
structions. Chase, Meiklejohn and Zaverucha [74] propose a class of algebraic
MACs and prove their generic security. Several authors use the Generic Group
Model for proving the generic security of structure-preserving signatures [2].
Groth [118] proposes new fully-structure-preserving signatures [8] and proves
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their generic security. Similarly, Fuchsbauer, Hanser and Slamanig [106] de�ne
a structure-preserving signature on equivalence classes and prove its generic
security. Furthermore, the Generic Group Model gives a convenient setting
for establishing lower bounds on the complexity of structure-preserving signa-
tures [3, 6, 7, 44]. In a similar spirit, the Generic Group Model has been used
for proving the correctness of translations of signature schemes from Type I to
Type III [5, 7, 12].

It is also worth pointing to a recent examination of the e�ciency of pairing-
based implementations. Based on a practical evaluation of the e�ciency of
state-of-the-art implementations of pairings, Chatterjee and Menezes [75] argue
that Type III pairings are more e�cient than their Type II counterparts, and
should be favoured in implementations. Their observation justi�es the need
to transpose existing results and tools for the Type II setting to the Type III
setting, and has motivated the application of our methods to the latter.

Several works have developed or used tools for reasoning about the Generic
Group Model. As already mentioned, the Generic Group Analyzer [43] imple-
ments an automated method for analyzing assumptions. Moreover, a subse-
quent extension of the analyzer [44] supports the automated analysis of secu-
rity of structure-preserving security against adversaries that make a bounded
number of queries. In practice, the tool only terminates for small bounds on
the number of queries. While these works are the most closely related to ours,
there have been previous works that apply computer tools to the Generic Group
Model. Barthe, Cederquist and Tarento [40, 48] were the �rst to use formal
veri�cation tools for analyzing the security of hardness assumptions and cryp-
tographic constructions in the Generic Group Model. Their work uses the Coq

proof assistant, providing no support for automation. Freeman [104] reports
on using computer algebra systems to prove the validity of new hardness as-
sumptions in the Generic Group Model. Beyond the GGM, there exist sev-
eral tools for synthesizing constructions, such as encryption schemes, modes of
operations, tweakable blockciphers, and structure-preserving signatures in the
Type II setting [42, 44, 125, 155], automated transformation of existing con-
structions, including signature schemes [5, 12, 14], and veri�cation of security
proofs [46, 47, 58]. In particular, [47] introduce AutoG& P, a highly automated
framework for proving the security of pairing-based cryptographic primitives;
the focus of [47] is on encryption schemes, but their methods are also applicable
to signatures and MACs. AutoG& P and gga8 are complementary in two di�er-
ent ways. First, gga8 focuses on full automation in the GGM while AutoG& P
provides partial automation in the Standard model. Second, and more interest-
ingly, some of our techniques for equational reasoning could be used to achieve
more automation in AutoG& P, whereas it could be possible to use techniques
from AutoG& P as a fallback solution when full automation fails in gga8.
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3. Unbounded Analysis of Constructions in the GGM

3.1.3 Notation

For a set S, we de�ne aS “ tas | s P Su and SS 1 “ tss1 | s P S ^ s1 P S 1u. We
write S˚ to denote vectors of elements in S. We use v to denote a vector and vpiq
to denote the i-th element. We assume given a set of uniform variables UVar,
a set of handle variables HVar “ HVar1 Z HVar2 Z HVart, a set of parameter
variables PVar, and a set of index variables IVar. We use typhq P t1, 2, tu to
denote the type of a handle variable, i.e., typhq “ i i� h P HVari.

We use RrX˘1s to denote the set of Laurent polynomials over the ring R
with variables in X. We also use the shorthand RrY ,X˘1s for pRrY sqrX˘1s

to denote nested polynomial rings. We use a similar notation MonrX˘1,Y s
for Laurent monomials. We write degV pMq to denote the degree of V in the
Laurent monomial M . We write coeffMpF q to denote the coe�cient of the
Laurent monomial M in the Laurent polynomial F .

For a term t possibly containing variables, we write trx ÞÑ t1s to denote the
result of substituting all occurrences of the variable x in t with t1. A context C
is a term with a distinguished variable which denotes a hole that can be �lled
in by an arbitrary term. We assume the hole occurs exactly once in a context.
We use Crts to denote the term obtained by plugging t into C 1s hole.

3.2 Translating Security Experiments into Con-

straints

In this section, we �rst present a language to de�ne security experiments in the
Generic Group Model. Next, we de�ne the language of winning constraints.
Winning constraints are formulas that characterize if an adversary can win a
security experiment. Finally, we present a translation procedure from security
experiments to winning constraints.

3.2.1 Security Experiment De�nition

We �rst present the language that we use to de�ne security experiments. Af-
terwards, we de�ne the corresponding games in the GGM and the symbolic
group model (see [43]). We will exploit that the generic and symbolic games
are indistinguishable and use the symbolic game to perform our analysis.

De�nition 19. (Security experiment) A security experiment is de�ned by a
tuple SE “ pt, ainp, odef ,wcondq where

‚ the group type is de�ned by t P tI, II, IIIu,

‚ the adversary input is de�ned by ainp “ pX, pF1,F2,Ftqq for
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3.2. Translating Security Experiments into Constraints

˛ global uniform variables X P UVar˚ and

˛ input polynomials Fi P ZrX˘1s˚,

‚ the oracle is de�ned by odef “ pa,h,R, pH1,H2,Htqq for

˛ arguments a P PVar˚ and oracle handles h P HVar˚,1

˛ oracle uniform variables R P UVar˚, and

˛ oracle polynomials Hi P ZrX˘1,R˘1,a,hs˚, and

‚ the winning condition is de�ned by wcond “ ppa, ph,W“,W‰q for

˛ winning arguments pa P PVar˚ and winning handles ph P HVar˚, and

˛ winning (in)equalities W“,W‰ P ZrX˘1,R˘1,a,h, pa, phs˚.

Intuitively, the adversary input represents the values given initially to the
adversary. This usually includes the public parameters and the public keys.
The oracle is de�ned by arguments and oracle handles that represent the oracle
input; uniform variables that denote randomness sampled by the oracle; and or-
acle polynomials that denote the oracle response. Finally, the winning condition
is de�ned by winning arguments that represent the forgery that the adversary
must produce; and winning (in)equalities that characterize valid forgeries.

We de�ne the corresponding generic group game GgenpSE q as follows:

1. Sample the vector x P pFˆp q|X|, compute the adversary inputs JFipxqKi P
G|Fi|

i (for i P t1, 2, tu), and call the adversary A with the corresponding
handles.

2. The adversary A can perform qg queries to perform group operations (for
group type t), an unbounded number of equality queries, and q queries to
an oracle that implements odef . The oracle for odef takes scalars v P F|a|p
for a and a vector of handles to group elements U for h. We use u to
denote the discrete logarithms of U , i.e., for all j P r|h|s,

q
upjq

y
i
“ Upjq

where i “ typhpjqq. Then it samples r P pFˆp q|R| and returns handles to

JHipx,v,u, rqKi P G
|Hi|

i . We use vpjq, upjq, rpjq to denote the correspond-
ing values used in the j-th query.

3. The adversary A returns scalars pv P F|pa|p for pa and handles to group
elements pU for ph. Again, we denote the discrete logarithms of pU with pu.
The adversary wins if for ’ P t“,‰u, w PW’, and j P rqs, it holds that
wpx, rpjq,vpjq,upjq, pv, puq ’ 0.

1Handle variables are typed, i.e., for all j P r|h|s, it holds that typhpjqq P t1, 2, tu.
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3. Unbounded Analysis of Constructions in the GGM

Note that additional care must be taken to ensure that the oracles and win-
ning conditions are e�ciently computable using scalar multiplication, addition,
application of isomorphisms, and application of bilinear maps. For example, it
is possible to specify an oracle that takes a handle to an element JvKt P Gt and
returns JvK1 P G1, which cannot be e�ciently computed in most bilinear groups
of interest.

The symbolic game GsympSE q is de�ned similarly, but internally uses Laurent
polynomials fpXq instead of group elements JfpxqKi. It is completely determin-
istic since it uses formal variables X to represent the initially sampled values
and indexed formal variables Rpjq to represent the values sampled in the oracle.

Formally, we de�ne GsympSE q as follows:

1. Store the polynomials FipXq P ZrX˘1s|Fi| in the list for the group Gi (for
i P t1, 2, tu) and call the adversary A with the corresponding handles.

2. The oracles for group operations and equality checks provide the same
interface as in the generic model, but perform all computations in the
ring of Laurent polynomials. The oracle for odef takes (in the j-th query)
scalars v P F|a|p for a and handles to polynomials

u P ZrX˘1, pRp1q
q
˘1, . . . , pRpj´1q

q
˘1
s
|hi|

for h. It returns handles to polynomials

HipX,v,u,Rpjq
q P ZrX˘1, pRp1q

q
˘1, . . . , pRpjq

q
˘1
s
|Hi|.

3. The adversary A returns scalars pv P F|pa|p for pa and handles to polynomials

pu P ZrX˘1, pRp1q
q
˘1, . . . , pRpqq

q
˘1
s
|phi|

for ph. He wins if for ’ P t“,‰u, w P W’, and j P rqs, it holds that
wpX,Rpjq,vpjq,upjq, pv, puq ’ 0.

Example 1. We can formalize the EUF-CMA security of the scheme in Figure
3.1 using the security experiment SE “ pt, ainp, odef ,wcondq de�ned as follows:

‚ the group type is t “ III

‚ the adversary input is ainp “ pX, pF1,F2,Ftqq where

˛ X “ pv, wq (for v, w P UVar), F1 “ p1, v, wq, F2 “ p1q, Ft “ p1q

‚ the oracle is odef “ pa,h,R, pH1,H2,Htqq where

˛ a “ pq, h “ pmq (for m P HVar2q,
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3.2. Translating Security Experiments into Constraints

Setup Pp1λq: Return PP “ pp,G1,G2, J1K1 , J1K2 ,Gt, eq Ð Gp1λq where G is a
polynomial time algorithm that on input 1λ returns a description of a bilinear
map in the Type III setting with groups of order p for a λ-bit prime p.

Key generation KpPPq:
Choose v, w Ð Fˆp and compute VK “ pPP , V,W q and SK “ pPP , v, wq as

V Ð JvK1 and W Ð JwK1 .

Signing SSK pMq:
For M “ JmK2 P G2 choose r Ð Fˆp and compute the signature pT1, T2, Sq as

T1 Ð JrK1 , T2 “ JrK2 , and S Ð
q
mv ` w ` r2

y
2
.

Veri�cation VVK pM, pT1, T2, Sqq:
Accept if, and only if, T1 P G1, M,T2, S P G2,

epJ1K1 , Sq “ epV,Mq ` epW, J1K2q ` epT1, T2q, and epT1, J1K2q “ epJ1K1 , T2q.

Figure 3.1: SPS-scheme from [75] in Type III setting.

˛ R “ prq (for r P UVar),

˛ H1 “ prq, H2 “ pr, mv ` w ` r
2q, Ht “ pq

‚ the winning condition is wcond “ ppa, ph,W“,W‰q where

˛
pa “ pq, ph “ ppm,pt1,pt2, psq and (for pt1 P HVar1 pm,pt2, ps P HVar2),

˛ W“ “ pps´ pmv ´ w ´ pt1pt2, pt1 ´ pt2q, W
‰ “ ppm´mpjqq. �

3.2.2 Winning Constraints

We �rst de�ne the language of winning constraints, a class of formulas that can
be used to characterize if an adversary can win the symbolic game GsympSE q.
Then we de�ne the set of solutions of a winning constraint and present a set of
simpli�cation rules that preserve the set of solutions.

De�nition 20. (Winning constraints) The language of winning constraints is
de�ned by the grammar given in Figure 3.2. We distinguish between bound
index variables and free index variables depending on whether they are bound
by @/Σ. We write ivarspCq to denote the free index variables in the constraint
C.
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3. Unbounded Analysis of Constructions in the GGM

C ::“ Di R K. C | C constraint

C 1 ::“ C 1 ^ C 1 | @ k R K. C 1 | E “ 0 | E ‰ 0 non-existential constraint

E ::“ E ` E | E ˚ E | ´E | CoeffMpEq expression

|
ÿ

kRK

E | R | R´1
| P | V | 1 | 0

M ::“M ˚M | R | R´1
| 1 monomial over uniform variables

R ::“ Rrks | R (indexed) uniform variable (R P UVar)

P ::“ ρrks | ρ (indexed) parameter (ρ P PVar)

V ::“ Yrks indexed handle variable (Y P HVar)

Figure 3.2: Grammar for winning constraints (for k P IVar, K Ă IVar). For
every CoeffpEq, E does not contain the symbol Coeff.

Intuitively, atomic constraints E “ 0 represent polynomial equalities. In the
quanti�cations @k R K and

ř

kRK , the index variable k ranges over all elements
in rqs except for the valuations of the index variables in K. Uniform variables
R{Rrks are treated like formal variables, parameters ρ{ρrks can be instantiated
with integers, handle variables Yrks can be instantiated with Laurent polynomials
over uniform variables, and the arithmetic operations are interpreted in the ring
of Laurent polynomials over Fp for a prime p. An expression CoeffMpEq repre-
sents the coe�cient of the monomialM in the expression E after the parameters
and handle variables in E are instantiated. The resulting Laurent polynomial
after instantiation contains only (indexed) uniform variables. Formally, the set
of solutions of a winning constraint is de�ned as follows.

De�nition 21. (Solutions of winning constraints) A structure s “ pp, q, σ, δ, χ, ξq
for a prime number p, a natural number q, a valuation σ : IVar Ñ rqs for (free)
index variables, valuations δ : PVar Ñ Fp and χ : PVar ˆ rqs Ñ Fp for the pa-
rameters, and a valuation ξ : HVar ˆ rqs Ñ FprUVar˘1,UVar˘1

r1s , . . . ,UVar˘1
rqs s for

the handle variables is a solution for a winning constraint C if eval spCq “ true
for the function eval de�ned in Figure 3.3.

3.2.3 Translation from Security Experiments toWinning Constraints

We de�ne the translation function to convert a security experiment de�nition
into winning constraints. The translation is sound and complete with respect
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eval spcq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

eval sk,K,1pc
1q _ . . ._ eval sk,K,q´|K|pc

1q for c “ Dk R K. c1

eval sk,K,1pc
1q ^ . . .^ eval sk,K,q´|K|pc

1q for c “ @k R K. c1

eval spc1q b eval spc2q for c “ c1 b c2

eval sk,K,1pc
1q ` . . .` eval sk,K,q´|K|pc

1q for c “
ř

kRK c1

δpρq for c “ ρ
χpρ, σpiqq for c “ ρris
ξpY, σpiqq for c “ Yris
Re for c “ Re, e P t`1,´1u
Re
rσpiqs for c “ Re

ris, e P t`1,´1u

coeffσpMqpeval spEqq for c “ CoeffMpEq
c for c P t0, 1u

Figure 3.3: De�nition of the evaluation function eval s for s “ pp, q, σ, δ, χ, ξq,
where R P UVar, b P t“,‰,^, ˚,`u are interpreted as the corresponding
boolean operations/arithmetic operations in the ring of Laurent polynomials
over Fp and sk,K,i de�ned as follows. Let tv1, . . . vq´|K|u “ rqszσpKq, then
sk,K,i “ pp, q, σ

1, δ, χ, ξq where σ1 “ σrk ÞÑ vis for i P t1, . . . , q ´ |K|u.

to a certain class of solutions. Roughly, this means that there is an e�cient
attacker2 on the security experiment in the Generic Group Model with non-
negligible winning probability i� there is a solution for the translated winning
constraints where handle variables are instantiated with �computable� Laurent
polynomials.

To simplify the presentation, we assume that for all security experiments in
Type II, it holds that F2 Ď F1 and H2 Ď H1 which allows us to ignore the
isomorphism Ψ. Similarly, we assume for Type I that F1 “ F2 and H1 “ H2

which allows us to ignore that G1 “ G2.

First, note that W’ Ă ZrX˘1,R˘1,a,h, pa, phs where X,R P UVar˚, a, pa P
PVar˚, and h, ph P HVar˚. For an index variable j P IVar, we write Rrjs to
denote the vector pRp1qrjs, . . . ,Rp|R|qrjsq of indexed uniform variables. Similarly,
we write arjs and hrjs. For our translation, we instantiante each winning handle

variable phpuq P HVar1 Y HVar2 with a linear combination of polynomials in the
adversary input and in the oracle output. Formally, we de�ne the vector E of
expressions as follows. For u P r|ph|s such that phpuq P HVar1 and l “ |H1|, we

2More precisely, an attacker that performs a polynomial number of queries qg and q.
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de�ne

Epuq “ ρp1,u,1qF1p1qpXq ` . . .` ρ
p1,u,|F1|qF1p|F1|q

pXq `
ÿ

k

τ
p1,u,1q
rks H1p1qpX,Rrks,arks,hrksq ` . . .`

ÿ

k

τ
p1,u,lq
rks H1plqpX,Rrks,arks,hrksq

where ρp1,u,nq and τ p1,u,nq are distinct fresh parameter variables. For u P r|ph|s
such that phpuq P HVar2, we de�neEpuq analogously. For u P r|ph|s such that phpuq P
HVart, we de�ne Epuq analogously additionally taking products of polynomials
from G1 and G2 into account. We de�ne the winning constraint derived from
SE as

toConstrpSE q “
ľ

wPW’

@j.
`

wpX,Rrjs,arjs,hrjs, pa,Eq ’ 0
˘

.

A priori, the notion of solution for winning constraints does not restrict the set of
Laurent polynomials that can be used to instantiate the handle variables in hrjs.
Since we are only interested in solutions where the instantiations of handle
variables are computable, we now de�ne the notion of constrained solution.

De�nition 22. (Constrained solutions of winning constraints) A solution is

constrained by sequences of sets tK
piq
j ujPN of Laurent polynomials pfor i P t1, 2, tuq

if for all i P t1, 2, tu, Y P HVari, and j P rqs, it holds that ξpY, jq P K
piq
j .

Since we are interested in solutions constrained by computable Laurent poly-
nomials, we next de�ne the sequences of computable polynomials. We use xSy
to denote the vector space over Fp generated by S.

De�nition 23. (Computable polynomials) The sequences of computable poly-
nomials for a security experiment

SE “ pt,X, pF1,F2,Ftqq, pa,h,R, pH1,H2,Htqq,wcondq

are de�ned as follows:

KSE ,piq
0 “ xtoSetpFiqy for i P t1, 2u

KSE ,ptq
0 “ xtoSetpFtq Y pKSE ,p1q

0 ˚KSE ,p2q
0 qy
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KSE ,piq
j`1 “ xKSE ,piq

j Y for j ě 0, i P t1, 2u

tHpX,v,E,Rpj`1q
q | H PHi ^

v P F|a|p ^ |E| “ |h| ^Epuq P K
SE ,ptyphpuqqq

j uy

KSE ,ptq
j`1 “ xKSE ,ptq

j Y pKSE ,p1q
j`1 ˚KSE ,p2q

j`1 q Y for j ě 0

tHpX,v,E,Rpj`1q
q | H PHt ^

v P F|a|p ^ |E| “ |h| ^Epuq P K
SE ,ptyphpuqqq

j uy .

The de�nition is always valid for Type III. For Types I and II, it is valid under
the previously stated assumptions on Fi and Hi. We say a solution s is an
SE -computable solution if it is constrained by pKSE ,piq

j qj,i.

Theorem 2 (Soundness and Completeness of Translation). Let p « 2λ and
qg, q polynomial in λ. Then the winning probability in the generic group game
GgenpSE q with a group of order p is negligible in λ for all adversaries that per-
form at most qg (resp. q) queries i� there is no SE -computable solution for
toConstrpSE q.

Sketch. For all concrete values of qg, q, and SE we can use the master theorem
for interactive assumptions from [43] (more precisely, the extended version for
handles from [102]) to obtain an algebraic criterion that is equivalent to the
security of the construction. By unfolding the de�nitions of toConstr and eval ,
we can verify that the criterion is true for all bounds on the number of oracle-
queries i� there is no SE -computable solution for toConstrpSE q. l

Example 2. The translation of the security experiment for the example in Fig-
ure 3.1 to winning constraints is

pS ´ xM ˚ V ´W ´ pT1 ˚ pT2 “ 0 ^ pT1 ´ pT2 “ 0 ^ @k. xM ´Mrks ‰ 0

where V,W,R P UVar and M P HVar2, µ, µ
1, µ2, ρ, ρ1, ρ2, ρ3, τ, τ 1, τ 2, γ, γ1, γ2 P

PVar, and xM, pS1, pS2, pS3 are de�ned as

xM “ µ`
ÿ

k

µ1rks ˚Rrks `
ÿ

k

µ2rks ˚ pMrks ˚ V `W `R2
rksq,

pT1 “ ρ`
ÿ

k

ρ1rks ˚Rrks ` ρ
2
˚ V ` ρ3 ˚W,

pT2 “ τ `
ÿ

k

τ 1rks ˚Rrks `
ÿ

k

τ 2rks ˚ pMrks ˚ V `W `R2
rksq, and

pS “ γ `
ÿ

k

γ1rks ˚Rrks `
ÿ

k

γ2rks ˚ pMrks ˚ V `W `R2
rksq .
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We �rst outline the sequence of computable monomials for G1:

KSE ,p2q
0 “ x1, V,W y

KSE ,p2q
1 “ xKSE ,p2q

0 Y tRr1suy

KSE ,p2q
2 “ xKSE ,p2q

1 Y tRr2suy

. . .

For G2, the sequence looks as follows:

KSE ,p2q
0 “ x1y

KSE ,p2q
1 “ xKSE ,p2q

0 Y t1, Rr1s,

:“f1
hkkkkkkkikkkkkkkj

V `W `R2
r1suy

KSE ,p2q
2 “ xKSE ,p2q

1 Y tRr2s, Rr1s ˚ V `W `R2
r2s, f1 ˚ V `W `R2

r2suy

. . .

For Gt, only the �rst line of the de�nition (computable earlier or product of
computable in G1 and computable in G2) is non-empty. �

3.3 Constraint Solving

In this section, we de�ne an algorithm that takes a winning constraint and
tries to derive a contradiction thereby showing that the winning constraint has
no solution. Our algorithm uses constraint solving rules to perform a complete
search for solutions using simpli�cation rules and case distinctions. We �rst give
the rules and then describe a strategy to apply the rules in Section 3.4. We begin
by describing a set of simpli�cation rules for constraints that exploit logical
equivalences to bring a constraint into a simpli�ed form. Next, we describe a
set of rules for introducing and simplifying Coeff constraints. Then, we describe
our rules for performing case distinctions followed by describing a procedure for
equational simpli�cation based on Gröbner Basis techniques. We conclude by
giving a worked out example.

3.3.1 Constraint solving rules and soundness

We use the notation C  SE C1 _ . . . _ Ck to denote the constraint solving rule
that �simpli�es� the constraint C into the disjunction of constraints C1, . . . , Ck.
The constraint solving rule might depend on the security experiment SE . Our
rules are sound in the following sense: If there exists an SE -solution s for C,
then there is an i P t1, . . . , ku such that there exists an SE -solution s1 for Ci.
The solution s1 is usually very similar to s, but might, for example, perform an
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Csimp ::“ Dk R K. Csimp | C^ existential quanti�cation

C^ ::“ C@ ^ . . .^ C@ conjunction

C@ ::“ @ k R K. C@ | Ceq universal quanti�cation

Ceq ::“ E` “ 0 | E` ‰ 0 (in)equality

E` ::“ E
ř

` . . .` E
ř

| 0 sum

E
ř

::“
ÿ

kRK

E
ř

| ´E˚ | E˚ | CoeffMpE˚q symbolic sum

M ::“M ˚M | R˘1
| R˘1

rks | 1 monomial over uniform variables

E˚ ::“ Epv
˚ . . . ˚ Epv

| 1 monomials

Epv ::“ ρrks | ρ | R
˘1
| R˘1

rks | Yrks parameter/variable

Figure 3.4: Grammar for simpli�ed winning constraints where ρ P PVar, R P

UVar, Y P HVar, k P IVar. Conjunctions, sums, and products cannot by empty,
but they can have a single argument. All bound variables must occur in the
body. A monomial never contains a uniform variable and its inverse and never
contains 1 unless it is equal to 1.

additional query with trivial parameters. We use C  SE K to denote that C
can be simpli�ed to the empty disjunction, which is equivalent to false.

We say a constraint C is contradictory if there is either a rule C  SE K or
there is a rule C  SE C1_ . . ._Ck such that for all i P t1, . . . , ku, the constraint
Ci is contradictory. Since all rules are sound, we obtain that if C is contradictory,
then C has no solution.

3.3.2 Simpli�cation rules

To exploit the equivalence e “ e1 given in Figure 3.5, we de�ne a corresponding
constraint solving rule Cres  SE Cre1s for each of them. The rules up to
and including the equivalences for Coeff can be used to bring every winning
constraint into simpli�ed form (see Figure 3.4). Additionally, we assume given
rules for the axioms of commutative rings with respect to 0, 1, ˚ and `.

The remaining rules are useful to enable the application of other rules. The
�rst remaining set of rules allows to swap binders, which might be required
before applying rules that expect a certain binder to be in outermost position.
To preserve the well-formedness of constraints, we adapt the index exception
sets K as shown below. The second remaining set of rules allows us to add
exceptions to binders. This might also bene�t the applicability of other rules.
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3. Unbounded Analysis of Constructions in the GGM

p@k R K. C1 ^ C2q “ p@k R K. C1q ^ p@k R K. C2q (equiv-1)

p@k R K. C1q “ C1 if k R ivarspC1q (equiv-2)

E1 ˚ E2 “ E2 ˚ E1 (equiv-3)

´pE1 ` E2q “ p´E1q ` p´E2q (equiv-4)
ÿ

kRK

pE1 ` E2q “ p
ÿ

kRK

E1q ` p
ÿ

kRK

E2q (equiv-5)

p
ÿ

kRK

E1q ˚ E2 “ p
ÿ

kRK

E1 ˚ E2q (equiv-6)

´p
ÿ

kRK

Eq “ p
ÿ

kRK

´Eq (equiv-7)

pp´E1q ˚ E2q “ ´pE1 ˚ E2q (equiv-8)

´p´Eq “ E (equiv-9)

R ˚R´1
“ 1 (equiv-10)

CoeffMpE1 ` E2q “ CoeffMpE1q ` CoeffMpE2q (equiv-11)

CoeffMp
ÿ

kRK

Eq “
ÿ

kRK

CoeffMpEq if ivarspMq Ď K (equiv-12)

CoeffMp´Eq “ ´CoeffMpEq (equiv-13)

Dk1 R K1. Dk2 R K2. C “ Dk2 R K
1
2. Dk1 R K

1
1. C (swap-1)

@k1 R K1. @k2 R K2. C “ @k2 R K
1
2. @k1 R K

1
1. C (swap-2)

ÿ

k1RK1

ÿ

k2RK2

E “
ÿ

k2RK12.

ÿ

k1RK11

E (swap-3)

@k R K. C “ p@k R K Y tk˚u. Cq ^ Crk ÞÑ k˚s if k˚ R K (split-1)

Cr
ÿ

kRK

Es “ Crp
ÿ

kRKYtk˚u

Eq ` Erk ÞÑ k˚ss where C (split-2)

de�nes k˚ ‰ k1

forall k1 P K

Figure 3.5: Equivalences for simplifying constraints where K 1
2 is de�ned as

K2ztk1u and K 1
1 is de�ned as K1 Y tk2u if k1 P K2 and K1 otherwise.
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3.3. Constraint Solving

CrE “ 0s SE CrE “ 0^ p@i1 R K1, . . . , il R Kl.CoeffMpEq “ 0qs

if ti1, . . . , ilu X ivarspEq “ H ^ E does not contain Coeff (coe�-1)

CrCoeffMpEqs SE CrpmonpEqs if hmonpEq “ 1 and M “ umonpEq
(coe�-2)

CrCoeffMpEqs SE Cr0s if contMonM{umonpEqphmonpEqq SE K

and C assures ivarspMq X ivarspEq “ H
(coe�-3)

Figure 3.6: Rules for introducing and simplifying Coeff expressions.

3.3.3 Introducing and simplifying Coeff constraints

In this section, we describe how to introduce and simplify constraints that
involve Coeff expressions. To de�ne our constraint solving rules, we de�ne
three functions that �lter variables in monomials.

The functions

‚ umon : MonrUVar˘1,HVar,PVars Ñ MonrUVar˘1
s,

‚ hmon : MonrUVar˘1,HVar,PVars Ñ MonrHVars, and

‚ pmon : MonrUVar˘1,HVar,PVars Ñ MonrPVars.

keep the exponents for the desired type of variables and set the exponents of
all other variables to zero.

The constraint solving rules are given in Figure 3.6. The �rst rule exploits
that if a polynomial is equal to zero, then when interpreting the polynomial
as a polynomial over uniform variables, the coe�cients for all monomials must
be zero. The remaining two rules allow to simplify Coeff expressions. The
�rst rule deals with the case where E does not contain any handle variables
and M is equal to the monomial over uniform variables contained in E . The
second rule deals with the case where it is possible to prove that there is no
(SE -computable) instantiation of the handle variables in E such that the result-
ing Laurent polynomial contains the monomial M. The rule makes uses the
contMon constraint. We will present the rules for showing that such a constraint
is contradictory in the next section.

Example 3. Consider the constraint Γ such that

Γ “ p
ÿ

j

ρrjsRrjs “ 0q ^ Γ1 .
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3. Unbounded Analysis of Constructions in the GGM

We can simplify the constraint as follows:

Γ SE Γ^ @i.CoeffRrisp
ÿ

j

ρrjsRrjsq “ 0 rcoe�-1s

 SE Γ^ @i.CoeffRrispp
ÿ

jRtiu

ρrjsRrjsq ` ρrisRrisq “ 0 rsplit-2s

 SE Γ^ @i.CoeffRrisp
ÿ

jRtiu

ρrjsRrjsq ` CoeffRrispρrisRrisq “ 0 requiv-11s

 SE Γ^ @i.CoeffRrisp
ÿ

jRtiu

ρrjsRrjsq ` ρris “ 0 rcoe�-2s

 SE Γ^ @i. p
ÿ

jRtiu

CoeffRrispρrjsRrjsqq ` ρris “ 0 requiv-12s

 SE Γ^ @i. p
ÿ

jRtiu

0q ` ρris “ 0 rcoe�-3s

 SE Γ^ @i. ρris “ 0 requiv-rings

For the step using [coe�-3], we exploit that contMonRris{Rrjsp1q SE K and that
j R tiu ensures that these index variables will never be instantiated with the same
value in the given context. We will give the required rules in the next section.
Then, our Gröbner-Basis based simpli�cation algorithm will replace ρrjs by 0 in
Γ for arbitrary index variables j. �

3.3.3.1 Proving Coeff to be zero for all SE solutions.

In this section, we describe a method to check if CoeffMpEq can be simpli�ed
to 0, i.e., for all SE -computable solutions s “ pp, q, σ, δ, χ, ξq, it holds that
coeffσpMqpeval spEqq “ 0. As in previous sections, we describe our approach
for Type III, but stress that it can be adapted to Type I and Type II, e.g., by
transforming the security experiment to make the isomorphisms redundant. We
assume that the oracle de�nitions are e�ciently computable and only returnc
handles to elements of G1 and G2. Furthermore, we assume that the winning
condition only uses handles to elements of G1 and G2. This covers most cryp-
tographic constructions of interest (including all SPS schemes). In this case,
we never have to deal with handle variables from HVart and for i P t1, 2u, the
polynomials Hi de�ning the oracle return values contain only handle variables
from HVari. We distinguish three cases for contMonMpEq: (i) degpEq “ 0, (ii)
degpEq “ 1, and (iii) degpEq ą 1.

Case (i): We use the rule

contMonMp1q SE K if M ‰ 1 .
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3.3. Constraint Solving

Here, we require that distinct index variables must be instantiated with distinct
values, which is ensured by the side condition of the Coeff-(3) rule.

Case (ii): We have E “ Yrjs for Y P HVari, j P IVar, and i P t1, 2u.
We must prove that the monomial M is not computable in i before query j,
i.e., it is impossible (in the symbolic group model) to obtain a handle h for
Gi that points to a polynomial F with m P monspF q before the j-th oracle
query. We perform a proof by contradiction that covers all cases on how a
given monomial M can be computed. We write canMulti,tj1,...,jnupmq if it is
possible to perform the multiplication of a given monomial with m using oracle
queries with query-indices distinct from tj1, . . . , jnu. For example, if we have
an oracle that returns a handle to Y ˚Rrjs`W in G1 (where Y P HVar1, R,W P

UVar), then canMult1,tj1upRrj2s ˚ Rrj3sq is true since we can call the oracle for
indices j2 and j3 to perform a multiplication with Rrj2s and Rrj3s. In contrast,
canMult1,tj1upRrj1s ˚ Rrj2s ˚ Rrj3sq is false because we cannot multiply with Rrj1s
if using the oracle for query index j1 is forbidden. To formalize this reasoning,
we de�ne a set of rules to reduce a constraint contMonmpYrjsq to a disjunction
of constraints canMulti,Jpmq such that ivarspmq “ H.

We de�ne the set SMSE
i of start monomials for a security experiment SE

and group index i as monspFiq Y pmonspHiq XMonrUVar˘1
sq where the Hi are

considered as polynomials over handle and uniform variables. We de�ne the set
T MSE

i of transformation monomials for a security experiment SE and a group
index i as tm | Y ˚m P monspHiq^Y P HVariu Ď MonrUVar˘1

s. For both sets,
we partition the previously de�ned sets into SMSE

i “ SMSE
i,glob Z SMSE

i,orcl and
T MSE

i “ T MSE
i,glob Z T MSE

i,orcl where the glob-sets contain all monomials that
contain only global uniform variables and the orcl-sets contain all monomials
that contain at least one oracle uniform variable. For monomials m, we write
mrjs to denote the monomial where all oracle uniform variables Y are replaced
with their indexed versions Yrjs. We also use the same notation for sets of
monomials.

We can now de�ne the rules given in Figure 3.7. The �rst rule captures
that to compute the monomial rm in i before query j, the adversary must start
with a monomial m1 (in m1, . . . ,ml, xm1rj1s, . . .) and then use oracle queries to
achieve an indirect multiplication of m1 by rm{m1. Here, the monomials mi are
either monomials included in the adversary input or monomials included in the
oracle return values that do not depend on handles and do not contain oracle
uniform variables. The monomials xmirjus are monomials included in the oracle
return values that do not depend on handles and that contain oracle uniform
variables. The set of forbidden query indices for the indirect multiplication
takes into account that j can never be used and that ju cannot be used if a
monomial with index ju is used as the start monomial.
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3. Unbounded Analysis of Constructions in the GGM

contMon
rmpYrjsq SE [contMon-1]

canMulti,tjuprm{m1q _ . . ._ canMulti,tjuprm{mlq _

canMulti,tj,j1uprm{pm1rj1sq _ . . ._ canMulti,tj,j1uprm{pmplrj1sq _

. . ._
canMulti,tj,jnuprm{pm1rjnsq _ . . ._ canMulti,tj,jnuprm{pmplrjnsq

if Y P HVari, tm1, . . . ,mlu “ SMSE
i,glob,

tpm1, . . . , pmplu “ SMSE
i,orcl, and tj1, . . . , jnu “ ivarsprmqztju.

canMulti,Jprmq SE [contMon-2]

canMulti,JYtjuprm{m1rjsq _ . . ._ canMulti,JYtjuprm{mlrjsq

if tm1, . . . ,mlu “ T MSE
i,orcl and j P ivarsprmqzJ .

canMulti,Jprmq SE K [contMon-3]

if J X ivarsprmq ‰ H

Figure 3.7: Rules for dealing with contMon. We use m{m1 to denote the corre-
sponding reduced Laurent monomial

The second rule is applicable whenever rm contains an indexed uniform vari-
able Rrjs such that j R J . In this case, the j-th query must be used to perform
an indirect multiplication that cancels out Rrjs and we perform a case distinc-
tion on all monomial multiplications containing oracle uniform variables that
can be performed by the oracle. For all cases where this step does not cancel
out all variables indexed with j, we can use the third rule that formalizes the
following fact: If the j-th query is forbidden, there is no way to cancel out a
uniform variable with index j.

It is not hard to see that we can reduce all constraints to canMulti,Jprmq such
that ivarsprmq “ H: If ivarsprmq non-empty, then either there is a j P ivarsprmqX
J and we can conclude with the last rule or we can apply the second rule and
add an index j P ivarsprmq to J . To check if a constraint canMulti,Jprmq with
ivarsprmq “ H is unsatis�able, we translate the constraint into a system of linear
equations that formalizes the following idea. Let tm1, . . . ,mlu “ T MSE

i,glob, then
all indirect multiplications that do not introduce indexed uniform variables are
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3.3. Constraint Solving

of the form
mδ1

1 ˚ . . . ˚m
δl
l

for δi P N. This corresponds to using the i-th transformation δi times to achieve
a multiplication with mδi

i . To check if there exist δ1, . . . , δl P N such that

rm “ mδ1
1 ˚ . . . ˚m

δl
l

we check if the linear system of equations

degV1
prmq “ degV1

pm1q ˚ δ1 ` . . .` degV1
pmlq ˚ δl

. . .

degVnprmq “ degVnpm1q ˚ δ1 ` . . .` degVnpmlq ˚ δl

has a solution over N where tV1, . . . , Vnu is the set of uniform variables that
occur in rm,m1, . . . ,ml.

Case (iii): The last case can be handled by generalizing the previous case.
We sketch how to achieve this, we have, E “ pY1qrj1s˚. . .˚pYnqrjns for Yu P HVariu ,
ju P IVar, and iu P t1, 2u. To extend the method from Case (ii), we use adapted
set of start monomials and transformation monomials that take cancellations
between these values for the di�erent handles into account. For example, the
set of transformation monomials is the product of transformation monomial sets
for j1, . . . , jn also allowing any set to be replaced by t1u.

Example 4. We will show that contMonRris{V pMrksq is contradictory for the
security experiment SE de�ned in Example 1. Note that Mrks P HVar2 and the
monomial sets for this group are:

SMSE
2,glob “ t1,W u SMSE

2,orcl “ tR,R
2
u

T MSE
2,glob “ tV u T MSE

2,orcl “ H

By applying the �rst rule in Figure 3.7 we have:

contMonRris{V pMrksq SE

canMult2,tkupRrisV
´1
q _ canMult2,tkupRrisV

´1W´1
q_ (div. by 1 and W )

canMult2,tk,iupV
´1
q _ canMult2,tk,iupV

´1R´1
ris q (div. by Rris and R

2
ris)

Now, since T MSE
2,orcl “ H, the second rule in Figure 3.7 gives us:

canMult2,tkupRrisV
´1
q SE K

canMult2,tkupRrisV
´1W´1

q SE K
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3. Unbounded Analysis of Constructions in the GGM

CrE1 ˚ E2 “ 0s SE CrE1 “ 0s _ CrE2 “ 0s [dist-1]

CrDi R K. C 1s SE
CrDi R K Y tju. C 1s

_ CrC 1ri ÞÑ jss
if j R K [dist-2]

CrC 1s SE
CrC 1 ^ E “ 0s

_ CrC 1 ^ E ‰ 0s
with E arbitrary [dist-3]

D∆. C 1  SE
D∆. p@i R K. ρris “ 0q ^ C 1

_ D∆, j R K. ρrjs ‰ 0^ C 1
with K arbitrary
and j R ivarsp∆q
YivarspC 1q

[dist-4]

Crc “ 0s SE K if c P Zzt0u [false-1]

Cr0 ‰ 0s SE K [false-2]

Figure 3.8: Rules for performing case distinctions and contradictions.

Additionally,
canMult2,tk,iupV

´1R´1
ris q SE K

because tk, iu X ivarspV ´1R´1
ris q ‰ H. Our problem has been reduced to compute

canMult2,tk,iupV
´1
q

so we de�ne the system of equations:

degV pV
´1
q “ degV pV q ˚ δ1

where δ1 P N. The equation is ´1 “ 1 ˚ δ1 and it reduces to K. This analysis
proves that contMonRris{V pMrksq  SE K, i.e., the handle variable Mrks cannot
contain the monomial Rris{V .

3.3.4 Case distinctions and contradictions

The rules for case distinctions and contradictions are given in Figure 3.8. The
�rst rule is applicable whenever we can express the left-hand-side of an equality
with 0 as a product of the two factors E1 and E2. Since we reason about elements
of an integral domain, we can conclude that at least one of the factors must be
equal to 0. The second rule formalizes that if C 1 is true for some i, then it it

54



3.3. Constraint Solving

is either true for some i ‰ j or it is true for i “ j. The third rule formalizes
that for all expressions E , the expression is either equal to 0 or not. We only
apply this rule with an E that already occurs as a subterm of C. In most cases
E “ ρ for ρ P PVar. The �nal case distinction rule deals with indexed parameter
variables ρris. Either ρris is equal to zero for all indices not in K or there is an
index j not in K such that ρrjs is not zero. The rule uses ∆ to denote all
existential bindings in the constraint.

The two contradiction rules are straightforward. The �rst rule states that a
non-zero constant c is not equal to zero. We keep track of applications of this
rule to obtain a lower bound on the the prime p for which our proof is valid.
The second rule just formalizes that zero is always equal to itself.

3.3.5 Gröbner Basis simpli�cation

Before applying the Gröbner Basis simpli�cation, we ensure that all @-quanti�ers
use the same binders ∆ and that all index exception sets are maximal for ∆.
This might require renaming of variables, extending the index exception sets,
and introducing unused variables. For the

ř

-binders p∆u, we assume for all u, v
that (i) p∆u “ p∆v, (ii) p∆u is a pre�x of p∆v, or (iii) vice versa.

The resulting constraint system can be rearranged to have the following form

D∇. p@∆. E1 “ 0q ^ . . .^ p@∆. El “ 0q ^

p@∆. pE1 ’1 0q ^ . . .^ p@∆. pE
pl ’pl 0q

where the Eu are expressions that do not contain handle variables, uniform
variables, or Coeff expressions, which we call parameter equality polynomials.
The pEu denote the remaining expressions. We want to move all the Eu under
a single quanti�er for simpli�cation. To take renamings of the bound variables
into account, we ensure beforehand that for all Eu and all permutations of the
@-bound variables, the resulting expression is already included. For example,
given

@j1, j2 R tj1u. ρrj1s ˚ ρ
1
rj2s
“ 0^ @j1, j2 R tj1u. ρrj2s ˚ ρ

1
rj1s
´ α “ 0

it is usually useful to add at least the permutation

@j1, j2 R tj1u. ρrj1s ˚ ρ
1
rj2s
´ α “ 0

before moving moving everything under a common quanti�er since this yields
the shared monomial ρrj1s ˚ ρ

1
rj2s

. After moving the parameter equality polyno-
mials under the same quanti�er, we get:

D∇. p@∆. E1 “ 0^ . . .^ El “ 0q ^

p@∆. pE1 ’1 0q ^ . . .^ p@∆. pE
pl ’pl 0q .
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3. Unbounded Analysis of Constructions in the GGM

Now, we move non-indexed parameters in monomials out of the
ř

-binder
and consistently replace non-bound parameters and

ř

-expressions with vari-
ables Xv. We call the corresponding mapping σ and use gu to denote polyno-
mial resulting from Eu. We can revert this abstraction process by applying σ,
i.e., σpguq “ Eu. Next, we compute the Gröbner Basis (over Z) of the ideal
xg1, . . . , gly which we denote with I “ xg11, . . . , g

1
l1y. By the properties of the

Gröbner Basis, we know that

pg1 “ 0^ . . .^ gl “ 0q ô pg11 “ 0^ . . .^ g1l1 “ 0q

and hence

pE1 “ 0^ . . .^ El “ 0q ô pE 11 “ 0^ . . .^ E 1l1 “ 0q

for E 1u “ σpguq which we exploit to simplify the parameter equality polynomials.
For computing the Gröbner Basis, we use a monomial order that prefers to
eliminate abstracted

ř

expressions. Next, we use the Gröbner Basis to simplify
the expressions @∆. pEu ’u 0. If pEu uses all variables in ∆, we use an extension σ1

of σ to abstract pEu to the polynomial f and de�ne f 1 as the result of reducing
f modulo the Gröbner Basis I. As before, we de�ne the simpli�ed pE 1u as σ1pf 1q.
Often, it is very useful to also simplify below

ř

-binders. We use an example to
illustrate how this works.

Example 5. Assume ∇ “ j1, ∆ “ j2 R tj1u, I “ xX1 ˚ X2y, σ “ tX1 ÞÑ

ρrj1s, X1 ÞÑ ρ1
rj2s
u, and

E1 “ p
ÿ

j3Rtj1u

ρrj1s ˚ ρ
1
rj3s
“ 0q .

Then we use @j2 R tj1u. ρrj1s ˚ ρ
1
rj2s
“ 0 to rewrite ρrj1s ˚ ρ

1
rj3s

to 0 below
ř

j3Rtj1u

by instantiating j2 with j3 (both have the same exception j1). �

3.3.6 Example: Proof of EUF-CMA for SPS

In this section show how our constraint solving rules can be used to prove
(unbounded) EUF-CMA security of the signature scheme in Figure 3.1. The
winning constraints for the associated security experiment SE are already given
in Example 2. To prove EUF-CMA security in the Generic Group Model, we
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must show that the following constraint has no SE -computable solution

γ `
ÿ

k

γ1rks ˚Rrks `
ÿ

k

γ2rks ˚ pMrks ˚ V `W `R2
rksq

´ ppτ `
ÿ

k

τ 1rks ˚Rrks `
ÿ

k

τ 2rks ˚ pMrks ˚ V `W `R2
rksqq

˚ pρ`
ÿ

k

ρ1rks ˚Rrks ` ρ
2
˚ V ` ρ3 ˚W q ` xM ˚ V `W q “ 0 (3.1)

^ ρ`
ÿ

k

ρ1rks ˚Rrks ` ρ
2
˚ V ` ρ3 ˚W

´ pτ `
ÿ

k

τ 1rks ˚Rrks `
ÿ

k

τ 2rks ˚ pMrks ˚ V `W `R2
rksqq “ 0 (3.2)

^ @k.xM ´Mrks ‰ 0 (3.3)

where xM is de�ned as

xM “ µ`
ÿ

k

µ1rks ˚Rrks `
ÿ

k

µ2rks ˚ pMrks ˚ V `W `R2
rksq .

Instead of immediately simplifying everything using the equivalences in Fig-
ure 3.5, we �rst apply the rule [coe�-1] where M “ R2

ris and E is the equa-
tion (3.2). After simplifying the resulting Coeff expressions (see Example 4),
we get the new equation @i.´τ 2

ris “ 0. Our Gröbner Basis simpli�cation replaces
every occurrence of τ 2i by 0. This results in the following new constraint:

γ `
ÿ

k

γ1rks ˚Rrks `
ÿ

k

γ2rks ˚ pMrks ˚ V `W `R2
rksq

´ ppτ `
ÿ

k

τ 1rks ˚Rrksq ˚ pρ`
ÿ

k

ρ1rks ˚Rrks ` ρ
2
˚ V ` ρ3 ˚W q

` xM ˚ V `W q “ 0 (3.1)

^ ρ`
ÿ

k

ρ1rks ˚Rrks ` ρ
2
˚ V ` ρ3 ˚W ´ pτ `

ÿ

k

τ 1rks ˚Rrksq “ 0 (3.2)

^ @k.xM ´Mrks ‰ 0 (3.3)

Now, we can apply the rule [coe�-1] where E is the left hand side of equa-
tion (3.2) and for di�erent monomials M, we obtain the following new equa-
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3. Unbounded Analysis of Constructions in the GGM

tions:

ρ´ τ “ 0 for M “ 1

@k. ρ1rks ´ τ
1
rks “ 0 for M “ Rrks

ρ2 “ 0 for M “ V

ρ3 “ 0 for M “ W

After this, we basically got rid of equation (3.2) and our Gröbner Basis simpli-
�cation yields:

γ `
ÿ

k

γ1rks ˚Rrks `
ÿ

k

γ2rks ˚ pMrks ˚ V `R
2
rks `W q

´ pτ 2
` p2

ÿ

k

τ ˚ τ 1rks ˚Rrksq `
ÿ

k,k1Rtku

τ 1rks ˚ τ
1
rk1s ˚Rrks ˚Rrk1s

`
ÿ

k

τ 12rks ˚R
2
rks `

xM ˚ V `W q “ 0 (3.1)

^ @k.xM ´Mrks ‰ 0 (3.3)

We now apply the rule [coe�-1] where E is expression in equation (3.1) obtaining
the following new equations:

^
ÿ

k

γ2rks ´ 1 “ 0 for M “ W (3.4)

^ @k. γ2rks ´ τ
12
rks “ 0 for M “ R2

rks (3.5)

^ @k.@k1 R tku. 2 ˚ τ 1rks ˚ τ
1
rk1s “ 0 for M “ RrksRrk1s (3.6)

Then, we apply the rule [dist-4] with K “ H to perform a case distinction on
the parameter τ 1:

@k. τ 1rks “ 0^ Γ (case 1)

_ Dk˚. τ 1rk˚s ‰ 0^ Γ (case 2)

Here, Γ represents the conjunction of our previous �ve equations. In case 1, the
Gröbner Basis simpli�cation results in the system

γ `
ÿ

k

γ1rks ˚Rrks ´ τ
2
´ xM ˚ V ´W “ 0 (3.1)

^ @k.xM ´Mrks ‰ 0 (3.3)

^ ´ 1 “ 0 (3.4)
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which simpli�es to K after applying rule [false-1] to equation (3.4).
In case 2, Gröbner Basis simpli�cation yields:

Dk˚.

γ `
ÿ

k

γ1rks ˚Rrks `Mrk˚s ˚ V ´ τ
2
´ 2τRrk˚s ´ xM ˚ V (3.1)

^ @k.xM ´Mrks ‰ 0 (3.3)

We apply the rule [coe�-1] where E is the left hand side of equation (3.1) for
di�erent monomials as M, obtaining:

γ ´ τ 2
“ 0 for M “ 1

@k R tk˚u. γ1rks “ 0 for M “ Rrks

γ1rk˚s ´ 2τ “ 0 for M “ Rrk˚s

After simplifying the system, we obtain:

Mrk˚s ˚ V ´ xM ˚ V “ 0 (3.1)

^ @k.xM ´Mrks ‰ 0 (3.3)

Applying the rule [dist-1] to equation (3.1) we obtain two cases:

Dk˚.
V “ 0

^ @k.xM ´Mrks ‰ 0

ł

Dk˚.

Mrk˚s ´
xM “ 0

^ @k.xM ´Mrks ‰ 0

(case 2.1) (case 2.2)

In case 2.1, after applying [coe�-1] for M “ V to the �rst equation and simpli-
fying, we obtain the equation 1 “ 0 that reduces to K according to rule [false-1].
Finally, in case 2.2 we apply the rule [split-2] and we get the system:

Mrk˚s ´
xM “ 0

^ @k R tk˚u.xM ´Mrks ‰ 0

^ xM ´Mrk˚s ‰ 0

Our Gröbner Basis simpli�cation will reduce it to,

0 ‰ 0^ p@k R tk˚u.xM ´Mrks ‰ 0q

which reduces to K according to rule [false-2].
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group_setting 3.

sample V,W.

input [V,W] in G1.

oracle o1(M:G2) =

sample R;

return [ R ] in G1,

[ R, M*V + R^2 + W] in G2.

win (wM:G2, wT1:G1, wT2:G2, wS:G2) =

((forall i: wM <> M_i) /\ wT1 = wT2 /\ wS = V*wM + wT1*wT2 + W).

Figure 3.9: Input �le for the Type III re-randomizable SPS scheme from Fig-
ure 3.1.

3.4 Implementation and Case Studies

We have implemented the described algorithm in the gga8 tool3 and have eval-
uated its e�ectiveness and performance on cryptographic constructions from
the literature (presented in Table 3.1) and automatically synthesized schemes
(presented in Table 3.2). The source code is written in OCaml and uses the
computer algebra system SAGE [186] for Gröbner Basis computations and the
SMT solver Z3 [94] for checking the satis�ability of linear equations over the
natural numbers. Although the code reproduces the algorithm as it is described
in this chapter, it also implements some optimizations and additional rules to
derive contradictions.

The tool takes an input �le such as the one shown in Figure 3.9 and performs
a proof search using our constraint solving rules guided by a heuristic. If the
search is successful, the tool returns a representation of the proof tree. To
ensure termination, we establish a timeout of 1000 seconds.

3.4.1 Case studies

We analyze the security of cryptographic constructions from the literature and
collect the results in Table 3.1. All the experiments were executed on a 8-core
machine with 2.40GHz Intel Core i7-3630QM CPU and 8GB of RAM.

The �rst �ve entries do not require support for oracles that take handles and

3Source code and case studies at https://github.com/generic-group-analyzer/

gga-unbounded.
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3.4. Implementation and Case Studies

Reference Scheme Property Time

Lysyanskaya et al. '99 [154] LRSW assumption Valid 2 s
Abe et al. '11 [7] One-time SPS in Type I OT-EUF-CMA 1 s
Pointcheval et al. '15 [167] Assumption 1 Valid 1 s
Pointcheval et al. '15 [167] Assumption 2 Valid 1 s
Pointcheval et al. '15 [167] Multi-message sign. scheme (r “ 3) EUF-CMA 1 s

Chase et al. '13 [74] MACGGM (messages length ď 3) UF-CMVA 1 s
Chase et al. '13 [74] MACDDH (messages length ď 3) UF-CMVA 3 s

Abe et al. '11 [3] SPS scheme, messages in G1 ˆG2 sEUF-CMA 22 s
Abe et al. '14 [6] Re-random. SPS for msg. in G2 EUF-CMA 6 s
Abe et al. '14 [7] Uni�ed SPS scheme sEUF-CMA 5 s
Abe et al. '14 [7] Uni�ed SPS scheme (with tokens) EUF-CMA 11 s
Chatterjee et al. '15 [75] Type III randomizable SPS EUF-CMA 3 s
Barthe et al. '15 [44] Re-randomizable SPS in Type III EUF-CMA 6 s

Groth '15 [118] Fully comb. SPSb“0 (m,n “ 1) EUF-CMA 8 s
Groth '15 [118] Fully comb. SPSb“1 (m,n “ 1) sEUF-CMA 8 s

Table 3.1: Case studies (last column denotes time for fully automated proof).

are therefore also in the scope of the tool presented in [43]. For the �rst four
entries, both the tool from [43] and gga8 prove unbounded security. For the
�fth example, gga8 succeeds, whereas the tool from [43] fails to �nd a proof.

The remaining examples are all outside the scope of the tool from [43]. First,
we analyze the Message Authentication Codes proposed in [74]. They propose
two MACs (instead of public key signatures) as the basis for their anonymous
credential system. One of them is proven secure in the Generic Group Model
and the other under the Decisional Di�e-Hellman (DDH) assumption (De�ni-
tion 16). Our tool con�rms the �rst proof and �nds a proof in the Generic
Group Model for the second construction4.

We also prove security for a number of Structure-Preserving Signature sche-
mes. First, we analyze the scheme proposed in [3] for bilinear groups of Type III.
Then, we analyze the re-randomizable scheme from [6] for Type II and Type III.
Next, we prove sEUF-CMA security of the uni�ed SPS signature scheme pro-
posed in [7], which is secure in all three settings. We also prove EUF-CMA se-
curity of its re-randomizable version (randomization tokens are given to the
adversary). Later, we analyze the translation of the scheme for Type III pro-
posed in [75]. We also consider the Type II scheme from [44]. Finally, we analyze
two instances of fully structure-preserving signature schemes proposed in [118].

To evaluate our tool on a wider range of examples, we also make use of

4This is of course implied by the pen-and-paper proof under the DDH assumption.
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Search Space Results

Veri�cation equations First signature elements 2-secure 8-secure

II

s3 “ fpr,v,w,mq S2 “ JrK2 1 1

s3s2 “ fpr,v,w,mq S2 “ JrK2 12 9

s3ps2 ´ wq “ fpr,v,w,mq S2 “ Jr ` wK2 14 8

III

s1 “ s2 ^ s3 “ fpr,v,w,mq S1 “ JrK1, S2 “ JrK2 2 2

s1 “ s2 ^ s1s3 “ fpr,v,w,mq S1 “ JrK1, S2 “ JrK2 117 75

s1s2 “ 1^ s1s3 “ fpr,v,w,mq S1 “ JrK1, S2 “
q
r´1

y
2

39 22

185 117

Table 3.2: Synthesis results for SPS schemes in Type II and Type III
with r, v, wÐ$ Zp, veri�cation keys V “ JvK1 ,W “ JwK1 P G1, message
M “ JmK2 P G2 and signatures S1 “ Js1K1 P G1, S2 “ Js2K2 , S3 “ Js3K2 P G2.

the synthesis tool for structure-preserving signature schemes presented in [44].
We take the existing results for Type II from [44] and use our tool to analyze
(unbounded) EUF-CMA-security for all schemes where the the tool from [44]
succeeds to prove 2-EUF-CMA security. We also extend the synthesis tool to
generate new schemes in Type III and apply our tool to those schemes that can
be proven 2-EUF-CMA secure with the tool from [44]. The results for both
Type II and Type III are summarized in Table 3.2. We classify the schemes
in di�erent groups, depending on the shape of the veri�cation equations (�rst
column). The column 2-secure represents the number of schemes of each group
that are proven 2-EUF-CMA secure using the tool from [44], while the column
8-secure represents the number of schemes of each group that are proven EUF-

CMA secure using our tool (for all bounds that are polynomial in the security
parameter).
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4
Attribute-Based Encryption:

Algebraic Characterization of Privacy

L'essentiel est invisible pour les yeux.

Antoine de Saint-Exupéry, 1943

Predicate encodings [76, 190] are symmetric primitives that can be used for
building predicate encryption schemes. We give an algebraic characterization
of the notion of privacy from predicate encodings, and explore several of its
consequences. Speci�cally, we propose more e�cient predicate encodings for
boolean formulae and arithmetic span programs, and generic optimizations of
predicate encodings. We de�ne new constructions to build boolean combina-
tion of predicate encodings. We formalize the relationship between predicate
encodings and pair encodings [24], another primitive that can be transformed
generically into predicate encryption schemes, and compare our constructions
for boolean combinations of pair encodings with existing similar constructions
from pair encodings. Finally, we demonstrate that our results carry to tag-based
encodings [132].

4.1 Introduction

Predicate Encryption (PE) [66, 138] is a form of public-key encryption (PKE)
that supports �ne-grained access control for encrypted data. We refer to Sec-
tion 2.1.5 from Chapter 2 for a formal de�nition.
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4. ABE: Algebraic Characterization of Privacy

Modular approaches for PE. In 2014, two independent works by Wee [190]
and Attrapadung [24] proposed generic and unifying frameworks for obtaining
e�cient fully secure PE schemes for a large class of predicates. Both works use
the dual system methodology introduced by Lewko and Waters [145, 188] and
de�ne a compiler that takes as input a relatively simple symmetric primitive and
produces a fully secure PE construction. Wee introduced so-called predicate en-
codings, an information-theoretic primitive inspired from linear secret sharing.
Attrapadung introduced so-called pair encodings and provided computational
and information-theoretic security notions. These approaches greatly simplify
the construction and analysis of predicate encryption schemes and share sev-
eral advantages. First, they provide a good trade-o� between expressivity and
performance, while the security relies on standard and well studied assump-
tions. Second, they unify existing constructions into a single framework, i.e.,
previous PE constructions can be seen as instantiations of these new compilers
with certain encodings. Third, building PE schemes by analyzing and building
these simpler encodings is much easier than building PE schemes directly. Com-
pared to full security for PE, the encodings must verify much weaker security
requirements. The power of pair and predicate encodings is evidenced by the
discovery of new constructions and e�ciency improvements over existing ones.
However, both approaches were designed over composite order bilinear groups.
In 2015, Chen, Gay and Wee [76] and Attrapadung [25] respectively extended
the predicate encoding and pair encoding compiler to the prime order setting.
Next, Agrawal and Chase [9] improved on Attrapadung's work by relaxing the
security requirement on pair encodings and thus, capturing new constructions.
In addition, their work also brings both generic approaches closer together, be-
cause like in [76], the new compiler relies (in a black-box way) on Dual System
Groups (DSG) [77, 78]. Additionally, Kim, Susilo, Guo, and Au [132] recently
introduced a new generic framework for modular design of predicate encryption
that improves on the performance of existing compilers. Their core primitive,
tag-based encodings, is very similar to predicate encodings.

4.1.1 Prior work

Predicate encodings have been introduced in [190] and we use a re�ned version
that is de�ned in [76] as our starting point. Both variants use an information-
theoretic de�nition of the hiding while we show that there is an equivalent
algebraic de�nition. Another related work is [111], initiating a systematic study
of the communication complexity of the so-called conditional secret disclosure
primitive, which is closely related to predicate encodings.

Other works also optimize existing predicate encryption schemes, for ex-
ample many works focus on going from composite order constructions to the
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4.1. Introduction

more e�cient prime order ones [25, 76, 143]. In [76] they also propose per-
formance improvements on dual system groups. We believe our optimizations
via predicate encodings complement other possible enhancements of predicate
encryption.

Boolean combinations of predicates have also been considered in the setting
of pair encodings. Attrapadung [28, 30] proposes generic transformations for
conjunction and for the dual predicate (see De�nition 28), but neither for nega-
tion nor disjunction. We propose new transformations for conjunction and dual
in the framework of predicate encodings and we also deal with negation and
disjunction.

The main advantage of DP-ABE is the possibility of considering policies over
objective attributes (associated to data) and policies over subjective attributes
(associated to user credentials) at the same time. DP-ABE has been considered
by Attrapadung in the pair encoding framework [28, 30]. To the best of our
knowledge, we are the �rst to provide DP-ABE in the predicate encoding and
tag-based encoding frameworks.

Revocation is a desirable property for PE and ABE schemes that has also
been considered by many works in the literature. Revocation allows to in-
validate a user's secret key in such a way that it becomes useless, even if its
associated attribute satis�es the policy associated to the ciphertext. Some at-
tempts [173] propose indirect revocation that requires that the master secret
owner periodically updates secret keys for non-revoked users. Other attempts
achieve direct revocation [27, 134, 152, 153], but either rely on strong assump-
tions or provide only selectively security. Our construction not only allows to
achieve revocation in a fully secure framework, but it allows to add revocation
to arbitrary predicate encodings.

Policy hiding is another property of PE, and ABE in particular, that has
been broadly studied. In this context, policies associated to ciphertexts are not
attached to them and therefore, unauthorized users will only learn the fact that
their key does not satisfy the policy, but nothing else. Policy Hiding has been
considered in several works [66, 138]. The security of our construction improves
on earlier works, thanks to the compiler from [76]. Our observation extends the
expressivity of attribute-hiding predicate encryption for ZIPE proposed in [76]
to support policy-hiding for boolean formulas.

In [76], the authors introduce the notion of spatial encryption predicate
encodings. We generalize this notion and introduce a transformation that makes
delegation possible for every predicate encoding.

Several works evaluate the suitability of ABE for di�erent applications. For
example, ABE has been used and benchmarked to enforce privacy of Electronic
Medical Records (EMR) [15], in a system where healthcare organizations export
EMRs to external storage locations. Other examples are Sieve [187] or Stream-
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4. ABE: Algebraic Characterization of Privacy

force [97], systems that provide enforced access control for user data and stream
data in untrusted clouds. In contrast to these works, we are the �rst to evaluate
predicate encryption and ABE based on modern modular approaches such as
the predicate encoding and pair encoding frameworks. The resulting schemes
also satisfy a stronger security notion (full vs. selective security) compared to
the previously mentioned evaluations. We focus on synthetic case studies, while
other works analyze more realistic settings and integration of ABE into bigger
systems. Combining our methods with these more practical case studies is a
very interesting direction for future work.

4.1.2 Comparison with Agrawal and Chase (EUROCRYPT 2017)

Concurrently and independently, Agrawal and Chase [11] introduce a new secu-
rity notion, which they call symbolic property, for pair encodings. They adapt
previous generic frameworks [9, 25] to de�ne a compiler that takes pair encodings
satisfying the symbolic property and produces fully secure predicate encryption
schemes under the q-ratio assumption�a new assumption that is implied by
some q-type assumptions proposed in [24, 148]. Moreover, they introduce the
notion of trivially broken pair encoding and show that any not trivially broken
pair encoding must satisfy their symbolic property. Their de�nitions of sym-
bolic property and trivially broken for pair encodings are closely related to our
algebraic characterization of privacy of predicate encodings. However, the two
results are incomparable: although pair encodings are more general than pred-
icate encodings (see Section 4.5.1 for a more detailed comparison), their results
rely of q-type assumption, whereas our results build on previous frameworks
that rely on weaker assumptions (Matrix-DH or k-LIN).

4.1.3 Notation

For a predicate P : X ˆ Y Ñ t0, 1u, we use px, yq P P as a shorthand for
Ppx, yq “ 1. We use the same conventions for matrix-representations of linear
maps on �nite-dimensional spaces. We de�ne vectors v P Fn as column matrices
and denote the transpose of a matrix A by AJ. We use diagpvq to denote
the diagonal matrix with main diagonal v. We denote the identity matrix of
dimension n by In, a zero vector of length n by 0n and a zero matrix of m rows
and n columns by 0m,n. Let S be a set of indices and A be a matrix. AS denotes
the matrix formed from the set of columns of A with indices is in S. We de�ne
the colspan of a matrix M P Fmˆn as the set of all possible linear combinations
columns of M . That is col

span xMy “ tMv : v P Fnu Ď Fm. We analogously
de�ne the rowspan of a matrix. We abuse of notation and write JvK to denote
pJv1K , . . . , JvnKq for vector v P Znp .
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4.2 Background

In this section, we de�ne predicate encodings, tag-based encodings and pair en-
codings the three primitives used in the three di�erent modular frameworks for
predicate encryption.

4.2.1 Predicate Encodings

Predicate encodings are information-theoretic primitives that can be used for
building predicate encryption schemes [190]. We adopt the de�nition from [76],
but prefer to use matrix notation.

De�nition 24 (Predicate encoding). Let P : X ˆY Ñ t0, 1u be a binary predi-
cate over �nite sets X and Y. Given a prime p P N, and s, r, w P N, a ps, r, wq-
predicate encoding for P consists of �ve deterministic algorithms psE, rE, kE,
sD, rDq: the sender encoding algorithm sE maps x P X into a matrix sEx P Zsˆwp ,
the receiver encoding algorithm rE maps y P Y into a matrix rEy P Zrˆwp , the key
encoding algorithm kE maps y P Y into a vector kEy P Zrp, while the sender and
receiver decoding algorithms, respectively sD and rD, map a pair px, yq P X ˆY
into vectors sDx,y P Zsp and rDx,y P Zrp respectively. We require that the following
properties are satis�ed:

reconstructability: for all px, yq P P, sDJx,ysEx “ rDJx,yrEy and rDJx,ykEy “ 1;

α-privacy: for all px, yq R P, α P Zp,

wÐ$ Zwp ; return psExw, rEyw ` α ¨ kEyq ” wÐ$ Zwp ; return psExw, rEywq

where ” denotes equality of distributions.

Reconstructability allows to recover α from px, y, sExw, rEyw ` α ¨ kEyq if
px, yq P P. Privacy ensures that α is perfectly hidden for such tuples if px, yq R P.

Example 6 (IBE predicate encoding). Let X “ Y “ Zp and let s “ r “ 1,
w “ 2. We de�ne the encoding functions as follows:

sEx “
`

x 1
˘

sDx,y “
`

1
˘

rEy “
`

y 1
˘

rDx,y “
`

1
˘

kEy “
`

1
˘

The above is a predicate encoding for Identity-Based Encryption, i.e., for the
predicate Ppx, yq “ 1 i� x “ y. Note that

`

x 1
˘

“
`

y 1
˘

when x “ y,
so reconstructability is satis�ed. On the other hand, α-privacy follows from the
fact that if x ‰ y, x ¨ w1 ` w2 and y ¨ w1 ` w2 are pair-wise independent. �
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Predicate encryption from predicate encodings. We try to provide some
intuition on how predicate encodings are compiled to predicate encryption
schemes by the compiler from [76]. We consider a simpli�ed compiler (see
explanations below). The master keys, ciphertexts and secret keys have the
following form:

msk “ JαK2
ctx “ pJsK1 , Js ¨ sExwK1 , JαsKt ¨Mq

mpk “ pJ1K1 , JwK1 , J1K2 , JwK2 , JαKtq
sky “ pJrK2 , Jα ¨ kEy ` r ¨ rEywK2q

The encrypted message M P Gt is blinded by a random factor JαsKt. The so-
called reconstruction property of predicate encodings ensures that this blinding
factor can be recovered for a pair pctx,skyq if Ppx, yq “ 1. More concretely, for
all pairs px, yq such that Ppx, yq “ 1, because multiplying by matrices sDx,y,rDx,y

is a linear operation, it is possible operate in the exponent and compute
q
s ¨ sDJx,ysExw

y
1

and
q

rDJx,ypα ¨ kEy ` r ¨ rEywq
y
2
,

obtaining JsβK1 and Jα ` rβK2 for β “ sDJx,ysExw “ rDJx,yrEyw (note that know-
ing the value of β is not necessary). Now, it is simple to recover JαsKt from
epJsK1 , Jα ` rβK2q and epJsβK1 , JrK2q. Security is ensured by the α-privacy prop-
erty of the encoding together with decisional assumptions about dual system
groups. Intuitively, the α-privacy property states that given certain values de-
rived from the output of the encoding functions for random input, α remains
information-theoretic hidden.

Note that the following is a simpli�cation of their compiler, where we avoid
DSG for simplicity. The real scheme produced by their compiler would have
twice as many group elements (under SXDH) or three times as many (under
DLIN).

4.2.2 Tag-based encodings

Tag-based encodings are new primitives de�ned in a very recent work [132] that
de�nes a new generic framework (using prime order groups) for modular design
of predicate encryption.

De�nition 25 (Tag-based encoding). Let P : X ˆ Y Ñ t0, 1u be a binary
predicate over �nite sets X and Y. Given a prime p P N, and c, k, h P N,
a pc, k, hq-tag-based encoding encoding for P consists of two deterministic al-
gorithms pcE, kEq: the ciphertext encoding algorithm cE maps x P X into a
matrix cEx P Zcˆhp and the key encoding algorithm kE maps y P Y into a matrix
kEy P Zkˆhp . We require that the following properties are satis�ed:
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reconstructability: for all px, yq P P, there exists an e�cient algorithm that
on input px, yq computes vectors mc P Zcp, mk P Zkp such that

mJ
c cEx “mJ

k kEy ‰ 0Jh

h-hiding: for all px, yq R P,

hÐ$ Zhp ; return pcExh, kEyhq «s h,h1Ð$ Zhp ; return pcExh, kEyh
1
q

where «s denotes negligible statistical distance between distributions.

The compiler proposed in [132] uses similar ideas to the one for predicate
encodings. However, it does not rely on dual system groups and can be instan-
tiated with symmetric bilinear maps. The message is blinded and ciphertexts
and keys contain a set of group elements that are enough to recover the blinding
factor only when the predicate is true. This compiler has the advantage that
some elements of ciphertexts and keys are Zp values and not group elements,
which reduces the storage size.

4.2.3 Pair Encodings

Attrapadung [24, 25] proposes an independent modular framework for predicate
encryption, based on a primitive called glspair-encoding. For our purposes,
it su�ces to consider a more restrictive, information-theoretic, notion of pair
encodings.

De�nition 26 (Information-theoretic pair encoding). Let P : X ˆ Y Ñ t0, 1u
be a binary predicate over �nite sets X and Y. Given a prime p P N, and
c, k, l,m, n P N, let h “ ph1, . . . , hnq, s “ ps0, s1, . . . , slq and r “ pα, r1, . . . , rmq
be sets of variables. An information-theoretic pc, k, nq-pair encoding scheme for
P consists of three deterministic algorithms pEnc1,Enc2,Pairq: the ciphertext
encoding algorithm Enc1 maps a value x P X into a list of polynomials cx P
Zprs,hsc, the key encoding algorithm Enc2 maps a value y P Y into a list
of polynomials ky P Zprr,hsk and the decoding algorithm Pair maps a pair
px, yq P XˆY into a matrix Ex,y P Zcˆkp . We require that the following properties
are satis�ed:

polynomial constraints:

‚ For every x P X and every f P Enc1pxq, f “ fps,hq only contains
monomials of the form si or sihj, i P r0, ls, j P rns.

‚ For every y P Y and every f P Enc2pyq, f “ fpr,hq only contains
monomials of the form α, ri or rihj, i P rms, j P rns.
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reconstructability: for all px, yq P P and all cx Ð Enc1pxq, ky Ð Enc2pyq,
Ex,y Ð Pairpx, yq, the following polynomial equality holds cJxEx,yky “ αs0.

perfect security: for all px, yq R P and all cx Ð Enc1pxq, ky Ð Enc2pyq,

hÐ$ Znp ; rÐ$ pZ˚pqm; sÐ$ Zl`1
p ; return pcxps,hq, kyp0, r,hqq ”

hÐ$ Znp ; rÐ$ pZ˚pqm; sÐ$ Zl`1
p ;αÐ$ Zp; return pcxps,hq, kypα, r,hqq

where ” denotes equality of distributions.

The compiler from pair encodings follows similar ideas to the other com-
pilers. The message is blinded by a random factor and ciphertexts and keys
contain all the information necessary to recover this blinded factor, only when
the predicate holds. The compiler from pair encodings requires to compute
a polynomial number of pairings during decryption, unlike the compilers for
predicate encodings and tag-based encodings that need1 6 and 8 pairings re-
spectively.

4.3 Predicate encodings: properties and conse-

quences

In this section, we present a purely algebraic (and independent of α) charac-
terization of the α-privacy property. It simpli�es both the analysis and the
construction of predicate encodings. In particular, we use our characteriza-
tion to de�ne and prove a new optimization of predicate encodings, i.e., a
transformation that makes the encoding functions smaller while preserving the
predicate. Additionally, we unify the reconstructability and privacy properties
and show that they are mutually exclusive and complementary, i.e., for every
px, yq P X ˆ Y , one and only one of the two conditions holds. This uni�ed
treatment facilitates the construction and study of predicate encodings.

4.3.1 Algebraic properties of predicate encodings

The following theorem captures two essential properties of predicate encodings:
�rst, privacy admits a purely algebraic characterization (furthermore indepen-
dent of α) given in terms of existence of solutions of a linear system of equations.
Second, reconstructability and privacy, when viewed as properties of a single

1Decryption in the framework of predicate encodings needs 4 pairings under SXDH as-
sumption or 6 under DLIN, in the framework of tag-based encodings decryption requires 8
pairings and the assumption is DLIN.
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pair px, yq, negate each other; i.e. a pair px, yq always satis�es exactly one of
the two properties.

Theorem 3 (Algebraic characterization of privacy). Let p P N be a prime, let
s, r, w P N and let S P Zsˆwp , R P Zrˆwp , k P Zrp. The following are equivalent:

‚ α-privacy. For every α P Zp,

wÐ$ Zwp ; return pSw, Rw ` α ¨ kq ” wÐ$ Zwp ; return pSw, Rwq

‚ (algebraic) privacy. There exists a vector w P Zwp such that Sw “ 0s
and Rw “ k

‚ non-reconstructability. For every pair of vectors s P Zsp and r P Zrp,
either sJS ‰ rJR or rJk ‰ 1.

Proof. We �rst prove that α-privacy is equivalent to algebraic privacy. Note
that the fact that @α P Zp,

wÐ$ Zwp ; return pSw, Rw ` α ¨ kq ” wÐ$ Zwp ; return pSw, Rwq

is equivalent to the existence of a bijection ρα such that for all w P Zwp , Sw “

S ¨ ραpwq ^ Rw ` α ¨ k “ R ¨ ραpwq. By linearity, it can be rewritten as

Spραpwq ´wq “ 0s ^ α ¨ k “ Rpραpwq ´wq

Now, the existence of such a bijection is equivalent to the existence of a solution
for the following (parametric in α) linear system on w: Sw “ 0s ^ Rw “ α ¨k.
To see this, note that if ρα is such a bijection, ραpw0q ´w0 is a solution of the
system for every w0 P Zwp . On the other hand, if w˚ is a solution of the system,
the bijection ραpwq “ w ` w˚ satis�es the required identities. To conclude,
note that the above system has a solution i� the following (independent of α)
does:

Sw “ 0s ^ Rw “ k

Next, we prove the equivalence between algebraic privacy and non-recons-
tructability. We use the following helping lemma from [53, Claim 2]: for every
�eld F, let A P Fmˆn and b P Fn be matrices with coe�cients in F, the following
two statements are equivalent:

‚ for every a P Fm, bJ ‰ aJA;

‚ there exists z P Fn such that zJb “ 1 and Az “ 0m.
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Assume that algebraic privacy does not hold, i.e., for every w P Zwp , either
Sw ‰ 0s or Rw ‰ k. Equivalently, for every w P Zwp

ˆ

0s
k

˙

‰

ˆ

´S
R

˙

w

which is equivalent (by our helping lemma) to the existence of pz1, z2q P ZspˆZrp
such that

`

zJ1 zJ2
˘

ˆ

0s
k

˙

“ 1 ^
`

zJ1 zJ2
˘

ˆ

´S
R

˙

“ 0Jw

That is, there exists z1 P Zsp, z2 P Zrp such that zJ1 S “ zJ2 R ^ zJ2 k “ 1, which
is exactly reconstructability. The proof follows from the fact all the steps are
equivalences. l

Our next result is a representation theorem. It is based on the notion of
partial encoding; informally, a partial encoding consists of the �rst three algo-
rithms of a predicate encoding; it is not attached to any speci�c predicate, nor
is required to satisfy any property.

De�nition 27 (Partial encoding). Let X and Y be �nite sets. Let p P N be a
prime and s, r, w P N. A ps, r, wq-partial encoding is given by three deterministic
algorithms psE, rE, kEq: sE maps x P X into a matrix sEx P Zsˆwp , and rE, kE
map y P Y into a matrix rEy P Zrˆwp and a vector kEy P Zrp respectively.

The representation theorem shows that there exists an embedding from par-
tial encodings to predicate encodings, and that every predicate encoding lies
the image of the embedding.

Theorem 4 (Representation theorem). Let X and Y be �nite sets. Let p P N
be a prime and s, r, w P N. Every ps, r, wq-partial encoding psE, rE, kEq for X
and Y induces a predicate encoding psE, rE, kE, sD, rDq for the following predicate
(henceforth coined implicit predicate):

Ppx, yq fi @w P Zwp , sExw ‰ 0s _ rEyw ‰ kEy

Moreover, if psE, rE, kE, sD, rDq is a predicate encoding for P, then for every
px, yq P X ˆ Y, Ppx, yq ô Ppx, yq.

Proof. The proof follows from Theorem 3 and the observation that recon-
structability of predicate encodings is equivalent to P, while privacy of predicate
encodings is equivalent to  P. l
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Example 7 (Implicit predicate of IBE predicate encoding). If we consider the
following partial encoding functions corresponding to the encoding presented in
Example 6:

sEx “
`

x 1
˘

rEy “
`

y 1
˘

kEy “
`

1
˘

our Theorem 4 guarantees that it is a valid predicate encoding for the implicit
predicate:

Ppx, yq “ 1 i� @pw1, w2q P Z2
p, x ¨ w1 ` w2 ‰ 0 _ y ¨ w1 ` w2 ‰ 1

A simple analysis shows that the above predicate is equivalent to x “ y. �

A consequence of Theorem 4 is that a predicate P over X and Y can be
instantiated by a ps, r, wq-predicate encoding i� there exist X -indexed and Y-
indexed matrices Sx P Zsˆwp and Ry P Zrˆwp and Y-indexed vectors ky P Zrp such
that:

Ppx, yq “ 1 i�

ˆ

0s
ky

˙

R col
span

B

Sx
Ry

F

That is helpful to analyze the expressivity of predicate encodings of certain size.

Example 8. Let X and Y be �nite sets, let n P N, we will characterize all the
predicates that can be achieved from a p1, 1, nq-partial encoding, say psE, rE, kEq.
Note that for every pair px, yq, sEx and rEy are vectors of length n, while kEy is
a single element. Say,

sEx “ pf1pxq, . . . , fnpxqq rEy “ pg1pyq, . . . , gnpyqq kEy “ hpyq

for certain functions fi : X Ñ Zp, gi, h : Y Ñ Zp for every i P rns. Theorem 4
guarantees that the above is a valid predicate encoding for the predicate

Ppx, yq “ 1 i� hpyq ‰ 0 ^
`

Dβ P Zp :
ľ

iPrns

fipxq “ βgipyq
˘

It can be shown that the predicate Pppx1, x2q, yq “ 1 i� px1 “ yq _ px2 “ yq
cannot be captured by p1, 1, nq-predicate encodings, while on the contrary, the
predicate Pppx1, x2q, yq “ 1 i� px1 “ yq ^ px2 “ yq could be instantiated.

4.3.2 Optimizing predicate encodings

In this section, we show that the e�ciency of predicate encodings can be im-
proved by pre- and post-processing. Speci�cally, we show that an ps, r, wq-
encoding psE, rE, kE, sD, rDq for a predicate P can be transformed into a ps1, r1, w1q-
encoding psE1, rE1, kE1, sD1, rD1q for the same predicate, by applying a linear trans-
formation to the matrices induced by sE, rE, kE.
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4. ABE: Algebraic Characterization of Privacy

More precisely, if we de�ne sE1x “ AsEx, rE1y “ BrEy and kE1y “ BkEy
for two matrices A and B, the privacy of the encoding will be preserved, but
reconstructability may be destroyed. On the contrary, when we consider the
partial encoding sE1x “ sExC, rE1y “ rEyC and kE1y “ kEy for a matrix C,
reconstructability is automatically guaranteed, but privacy could not hold (for
the same predicate). Intuitively, this occurs because reconstructability depends
on the rowspan of the matrices sEx, rEy, while privacy depends on their colspan.
Our following theorem imposes conditions on these matrices A, B and C so
that the resulting predicate encoding is equivalent to the original one.

Theorem 5. Let X and Y be �nite sets. Let p P N be a prime, s, r, w, s1,
r1, w1 P N, and let psE, rE, kE, sD, rDq be a ps, r, wq-predicate encoding for P :
X ˆ Y Ñ t0, 1u. Let A be a function that maps every element x P X into
a matrix Ax P Zs1ˆsp , B be a function that maps y P Y into a matrix By P

Zr1ˆrp and let C P Zwˆw1p be a matrix. There exists a ps1, r1, w1q-partial encoding
psE1, rE1, kE1, sD1, rD1q for P, where

sE1x “ AxsExC rE1y “ ByrEyC kE1y “ BykEy

provided the following conditions hold:

‚ For all px, yq P P, sDJx,y P
row
span xAxy and rDJx,y P

row
span xByy;

‚ For all px, yq R P, there exists w P col
span xCy s.t. sExw “ 0s and rEyw “

kEy.

Proof. To see correctness of the new encoding, note that for all px, yq P P, since

sDJx,y P
row
span xAxy ^ rDJx,y P

row
span xByy

there exist sD1
J

x,y and rD1
J

x,y such that

sDJx,y “ sD1
J

x,yAx ^ rDJx,y “ rD1
J

x,yBy

Therefore,

sD1
J

x,ypAxsExCq “ psDJx,ysExqC “ prD
J
x,yrEyqC “ rD1

J

x,ypByrEyCq

rD1
J

x,ypBykEyq “ rDJx,ykEy “ 1

To see privacy, note that for every px, yq R P, there exists w P col
span xCy such

that sExw “ 0s ^ rEyw “ kEy. Therefore, there also exists w1 P Zw1p such that
w “ Cw1. Note that,

sE1xw
1
“ pAxsExCqw1

“ AxsExw “ Ax0s “ 0s1

rE1yw
1
“ pByrEyCqw1

“ ByrEyw “ BykEy “ kE1y

so algebraic privacy is satis�ed. l
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This transformation is useful to make predicate encodings simpler and more
e�cient in di�erent manners. For instance, it can be used to make the matrices
corresponding to encoding and decoding functions become sparser. That is, if
we consider A and B as functions that apply matrix Gaussian elimination2 to
the matrices associated to sE and rE, kE, many entries from these matrices will
be zero. Hence, fewer group operations will be performed during encryption
and key generation, improving the performance. Moreover, the transformation
can be used to reduce the size of mpk, ctx and sky. If w1 ă w, the number
of elements in mpk will decrease. This will also improve the performance of
encryption and key generation (both depend directly on mpk). Additionally,
if s1 ă s or r1 ă r, the number of elements in ctx and sky will also decrease
respectively.

Note that a simpli�cation from the right (multiplying by C) changes the
structure of the encoding and may open the possibility of left-simpli�cations
that were not available before and vice versa. Example 9 illustrates this idea.
We optimize a predicate encoding that corresponds to the result of applying
our negation transformation (from next section, Theorem 8) to the predicate
encoding from Example 6.

Example 9. Let X “ Y “ Zp and consider the p2, 3, 4q-predicate encoding
psE, rE, kE, sD, rDq for Ppx, yq “ 1 i� x ‰ y, de�ned as

sEx “

ˆ

x ´1 0 0
1 0 ´1 0

˙

rEy “

¨

˝

0 1 0 y
0 0 1 1
0 0 0 1

˛

‚ kEy “

¨

˝

0
0
1

˛

‚

sDJx,y “
´

´1
x´y

x
x´y

¯

rDJx,y “
´

1
x´y

´x
x´y 1

¯

Note that for every pair px, yq R P, i.e. x “ y, the single solution of the system
sExw “ 02 ^ rEyw “ kEy is w

J “
`

´1 ´y ´1 1
˘

, thus the matrix

C “

ˆ

´1 0 ´1 1
0 1 0 0

˙J

satis�es the conditions of Theorem 5. Therefore, the p2, 3, 2q-partial encoding
psE1, rE1, kE1q, where

sE1x “ sExC “

ˆ

´x ´1
0 0

˙

rE1y “ rEyC “

¨

˝

y 1
0 0
1 0

˛

‚ kE1y “ kEy “

¨

˝

0
0
1

˛

‚

2Note that if matrices Ax, By or C are invertible, they always satisfy their respective
requirements.
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4. ABE: Algebraic Characterization of Privacy

induces a predicate encoding for the same predicate. The previous simpli�cation,
opens the possibility of applying again the theorem, with matrices Ax and By,
obtaining a p1, 2, 2q-predicate encoding for Ppx, yq “ 1 i� x ‰ y. Concretely,

Ax “
`

´1 0
˘

sE2x “
`

x 1
˘

rE2y “

ˆ

y 1
1 0

˙

rE2y “

ˆ

0
1

˙

By “

ˆ

1 0 0
0 0 1

˙

sD2
J

x,y “

´

1
x´y

¯

rD2
J

x,y “

´

1
x´y 1

¯

�

The above simpli�cations can be successfully applied to actual predicate
encodings proposed in [76]. In Section 4.6.2.1 we propose improved predicate
encodings for monotonic boolean formulas and arithmetic span programs.

4.3.3 Combining predicates

Using the new characterization of predicate encodings from the previous sec-
tion, we de�ne transformations to combine predicate encodings into new pred-
icate encodings for more complex predicates. In particular, we de�ne predicate
encoding transformations for disjunction, conjunction, negation and the dual
predicate. These combinations are useful to create new schemes that inherit
di�erent properties from the more basic building blocks. In Section 4.6, we
propose several constructions that rely on these transformations.

4.3.3.1 Disjunction

We present a method to build a predicate encoding for the disjunction of P1

and P2 from predicate encodings for P1 and P2. Observe that the predicate
encryption scheme obtained from the resulting predicate encoding is more e�-
cient than the predicate encryption scheme obtained by compiling the predicate
encodings of P1 and P2 separately, and then applying a generic transformation
that builds predicate encryption schemes for a disjunction from predicate en-
cryption schemes of its disjuncts.

Theorem 6 (Disjunction of predicate encodings). For every ps1, r1, w1q-predicate
encoding psE1, rE1, kE1, sD1, rD1

q for P1 : X1ˆY1 Ñ t0, 1u and every ps2, r2, w2q-
predicate encoding psE2, rE2, kE2, sD2, rD2

q for P2 : X2ˆY2 Ñ t0, 1u, there exists
a ps1`s2, r1`r2, w1`w2q-predicate encoding psE, rE, kE, sD, rDq for the predicate
P : pX1,X2q ˆ pY1,Y2q Ñ t0, 1u such that:

Pppx1, x2q, py1, y2qq ô P1px1, y1q _ P2px2, y2q
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Concretely,

sEpx1,x2q “

ˆ

sE1
x1

0s1,w2

0s2,w1 sE2
x2

˙

rEpy1,y2q “

ˆ

rE1
y1

0r1,w2

0r2,w1 rE2
y2

˙

kEpy1,y2q “

ˆ

kE1
y1

kE2
y2

˙

sDJpx1,x2q,py1,y2q
“ if P1px1, y1q then

`

sD1J
x1,y1

0Js2
˘

else
`

0Js1 sD2J
x2,y2

˘

rDJpx1,x2q,py1,y2q
“ if P1px1, y1q then

`

rD1J
x1,y1

0Jr2
˘

else
`

0Jr1 rD2J
x2,y2

˘

Proof. Reconstructability can be seen by a simple check based on the recon-
structability of the original encodings.
To see privacy, note that P1px1, y1q _ P2px2, y2q “ 0 implies P1px1, y1q “ 0 and
P2px2, y2q “ 0 implies. Let w1 and w2 be witnesses of privacy of predicate
encodings 1 and 2 respectively. It is easy to check that wJ “

`

wJ
1 wJ

2

˘

is
a witness of privacy of the transformed encoding. l

Note that it is possible to obtain sharing between attributes, e.g., if X1 “ X2

and the sender uses only the subset tpx, xq | x P X1u of X1 ˆ X2, the predicate
becomes Ppx, py1, y2qq “ 1 i� P1px, y1q _ P2px, y2q.

4.3.3.2 Conjunction

In contrast to disjunction, the naive solution that just concatenates secret keys
fails. Given keys for attribute pairs py1, y2q and py11, y

1
2q, it would be possible

to recombine the components and obtain a key for py1, y
1
2q leading to collusion

attacks. Our predicate encoding transformation deals with this problem by
�tying� the two components together with additional randomness.

Theorem 7 (Conjunction of predicate encodings). For every ps1, r1, w1q-predicate
encoding psE1, rE1, kE1, sD1, rD1

q for P1 : X1ˆY1 Ñ t0, 1u and every ps2, r2, w2q-
predicate encoding psE2, rE2, kE2, sD2, rD2

q for P2 : X2ˆY2 Ñ t0, 1u, there exists
a ps1 ` s2, r1 ` r2, w1 ` w2 ` 1q-predicate encoding psE, rE, kE, sD, rDq for the
predicate P : pX1,X2q ˆ pY1,Y2q Ñ t0, 1u such that:

Pppx1, x2q, py1, y2qq ô P1px1, y1q ^ P2px2, y2q

Concretely,

sEpx1,x2q “

ˆ

sE1
x1

0s1,w2 0s1
0s2,w1 sE2

x2
0s2

˙

sDpx1,x2q,py1,y2q “
1

2

ˆ

sD1
x1,y1

sD2
x2,y2

˙

rEpy1,y2q “

ˆ

rE1
y1

0r1,w2 kE1
y1

0r2,w1 rE2
y2

´kE2
y2

˙

rDpx1,x2q,py1,y2q “
1

2

ˆ

rD1
x1,y1

rD2
x2,y2

˙

kEpy1,y2q “

ˆ

kE1
y1

kE2
y2

˙
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Proof. A simple check shows reconstructability. To see privacy, P1px1, y1q ^

P2px2, y2q “ 0 implies P1px1, y1q “ 0 or P2px2, y2q “ 0. If the �rst holds, let w1

be a witness of privacy of the �rst encoding. Then, wJ “
`

2wJ
1 0Jw2

´1
˘

is a witness of the algebraic privacy of the transformed encoding. If the second
holds, let w2 be a witness of privacy of the second encoding. A valid witness
now is wJ “

`

0Jw2
2wJ

2 1
˘

. l

Note that it is possible to combine Theorems 6 and 7 to create a predicate
encoding for P1 ’ P2, where the placeholder ’P t_,^u can be part of keys or
ciphertexts. See Section 4.7 for more details about this encoding.

4.3.3.3 Negation

To obtain a functionally complete set of boolean predicate encoding transform-
ers, we now de�ne a transformation for negation. Our transformation uni�es
negated predicates like Non-zero Inner-Product Encryption (NIPE) and Zero
Inner-Product Encryption (ZIPE). In Section 4.6.2.1 we use this transforma-
tion to build optimized predicate encodings. The technique works for predicate
encodings where the negation transformation yields a predicate encoding that
can be further simpli�ed (using our method from Section 4.3.2).

Theorem 8 (Negation of predicate encodings). For every ps, r, wq-predicate
encoding psE, rE, kE, sD, rDq for P : XˆY Ñ t0, 1u there exists a pw,w`1, s`w`
rq-predicate encoding psE1, rE1, kE1, sD1, rD1q for the predicate P1 : X ˆY Ñ t0, 1u
such that P1px, yq ô  Ppx, yq. Concretely,

sE1x “
`

sEJx ´Iw 0w,r
˘

rE1y “

ˆ

0w,s Iw rEJy
0Js 0Jw kEJy

˙

kE1y “

ˆ

0w
1

˙

sD1x,y “ wx,y rD1x,y “

ˆ

´wx,y

1

˙

where for a pair px, yq P X ˆ Y such that Ppx, yq “ 0, wx,y is de�ned as the
witness for algebraic privacy, i.e., a vector such that

sExwx,y “ 0s ^ rEywx,y “ kEy

Note that such a vector always exists when Ppx, yq “ 0. Moreover, sD and rD
do not need to be de�ned when P1px, yq is not 1, that is, when Ppx, yq is not 0.

Proof. It is not di�cult to check reconstructability. Privacy holds because when
Ppx, yq “ 1, we can de�ne wJ “

`

´sDJx,y ´sDJx,ysEx rDJx,y
˘

which can be
checked to be a witness of the algebraic privacy of the transformed predicate
encoding. l
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A similar construction has been considered in a posterior work [20] to this
work. Speci�cally, they show how to transform a conditional disclosure of secrets
(CDS) for f into a CDS for f̄ (the complement of f).

4.3.3.4 Dual

In the literature, the notions of KP-ABE and CP-ABE are considered sepa-
rately. In fact, many works are only valid for one of the two versions of At-
tribute Based Encryption. Our transformation uni�es the notion of KP-ABE
and CP-ABE in the framework of predicate encodings. In this context they
should not be considered separately, because our transformation provides a
Ciphertext-Policy predicate encoding from any Key-Policy predicate encoding
and vice versa.

De�nition 28 (Dual predicate). Let P : X ˆ Y Ñ t0, 1u be a predicate, the
dual predicate of P is P1 : Y ˆ X Ñ t0, 1u such that P1py, xq ô Ppx, yq.

Theorem 9 (Dual predicate encoding). For every ps, r, wq-predicate encoding
psE, rE, kE, sD, rDq for P : X ˆY Ñ t0, 1u there exists a pr, s`1, w`1q-predicate
encoding psE1, rE1, kE1, sD1, rD1q for the predicate P1 : Y ˆ X Ñ t0, 1u such that
P1py, xq ô Ppx, yq. Concretely,

sE1y “
`

rEy kEy
˘

rE1x “

ˆ

sEx 0s
0Jw 1

˙

kE1x “

ˆ

0s
1

˙

sD1y,x “ rDx,y rD1y,x “

ˆ

sDx,y

1

˙

Proof. A simple check is enough to verify reconstructability. For privacy, note
that when P1py, xq “ 0, we have Ppx, yq “ 0. Let w be a witness of the algebraic
privacy of the original encoding. Now, w

1J “
`

´wJ 1
˘

is a witness of the
dual predicate encoding. l

4.4 Tag-based Encodings

We show that our techniques for predicate encodings can be extended to the
framework of tag-based encodings. In particular, we show a similar result to our
Theorem 3, which establishes that h-hiding and reconstructability are mutually
exclusive and complementary.

Theorem 10. Let p P N be a prime, let k, c, h P N and let C P Zcˆhp , K P Zkˆhp .
The following are equivalent:
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‚ h-hiding: hÐ$ Zhp ; return pCh, Khq ” h,h1Ð$ Zhp ; return pCh, Kh1q

‚ non-reconstructability For every mc P Zcp and very mk P Zkp, either
mJ

c C ‰mJ
kK or mJ

c C “ 0Jh .

where ” denotes equality of distributions.

Proof. The proof follows directly from the following lemma and the observation
that i) is equivalent to h-hiding, while iii) is non-reconstructability (take A “ C
and B “ K). l

Lemma 2. Let A P Zmˆnp and B P Zlˆnp be matrices. Let C P Zpm`lqˆnp be
the concatenation of A and B by rows. The following three statements are
equivalent:

i) @a P Zmp , @b P Zlp, Pr
xÐ$ Znp

rAx “ a |Bx “ bs “ Pr
xÐ$ Znp

rAx “ as

ii) rankpCq “ rankpAq ` rankpBq

iii) @a P Zmp , @b P Zlp, aJA ‰ bJB _ aJA “ 0Jn

Of the Lemma. Note that i) holds for every a P Zmp , b P Zlp such that Ax “ a
or Bx “ b have no solution. Let a P Zmp , b P Zlp be such that the systems
Ax “ a and Bx “ b have individually at least one solution (note that such a
and b always exist). We de�ne the sets ΓA “ tx P Znp : Ax “ au, ΓB “ tx P
Znp : Bx “ bu, ΓAB “ tx P Znp : Ax “ a ^ Bx “ bu. By the Rouché-Capelli
Theorem,

|ΓA| “ pn´rankpAq
|ΓB| “ pn´rankpBq

|ΓAB| “ pn´rankpCq

Note that i) can be expressed as |ΓAB |
pn

“
|ΓA|
pn
¨
|ΓB |
pn

which is equivalent to the

equation pn ¨ |ΓAB| “ |ΓA| ¨ |ΓB|, and therefore, pn ¨ pn´rankpCq “ pn´rankpAq ¨

pn´rankpBq if, and only if, rankpCq “ rankpAq ` rankpBq which is ii).
Now, note that rankpCq “ rankpAq ` rankpBq if, and only if, there is not

a non-zero linear combination of rows of A that can be expressed as a linear
combination of rows of B, which is equivalent to statement iii). l

A consequence of Theorem 10 is that every valid tag-based encoding is per-
fectly hiding, or equivalently, there cannot exist a tag-based encoding where the
two distributions from h-hiding are negligibly close but not identical.

Thanks to the above theorem, it is possible to de�ne disjunction and con-
junction transformations for tag-based encodings along the lines of predicate
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encodings. We were not able to design a negation transformation for tag-based
encodings and leave it for future work. On the other hand, the dual transfor-
mation is straightforward in this framework, as mentioned in [132], because the
encoding primitives are completely symmetric.

Expressivity of tag-based encodings vs predicate encodings. We try
to improve our understanding of the di�erences between these two primitives by
providing a transformation that produces valid predicate encodings from valid
tag-based encodings for the same predicate.

Theorem 11. Given a pc, 1, hq-tag-based encoding pcE, kEq for P : X ˆ Y Ñ

t0, 1u, the pc, 1, hq-partial predicate encoding psE1, rE1, kE1q de�ned as sE1x “ cEx,
rE1y “ kEy, kE1y “

`

1
˘

, induces a predicate encoding for P.

Proof. According to our Theorem 4, the partial encoding psE1, rE1, kE1q induces
a predicate encoding for the predicate Ppx, yq “ 1 i� Ds P Zcp, r P Z1

p s.t.
sJsE1x “ r ¨ rE1y and r ¨ kE1y “ 1, or equivalently, Ds P Zcp s.t. sJcEx “ kEy,
which is equivalent to the reconstructability of the tag-based encoding pcE, kEq.
According to Theorem 10 it is also equivalent to the predicate P. l

Note that because of the symmetry of tag-based encodings, Theorem 11 can
be also applied to p1, k, hq-tag-based encodings. All the tag-based encodings
proposed in [132] (except one) have either c “ 1 or k “ 1, so the above theorem
can be applied to them.

4.5 Pair Encodings

In this section we provide an embedding that transforms every predicate en-
coding into an information-theoretic pair encoding. Consequently, we can see
predicate encodings as a subclass of pair encodings. This opens the possi-
bility of reusing the conjunction and dual transformation proposed by Attra-
padung [28, 30] for pair encodings, to create combinations of predicate encod-
ings via our embedding. We show that this alternative method is fundamentally
di�erent from our direct conjunction and dual transformations on predicate en-
codings, where our combinations produce more e�cient encodings.

4.5.1 Embedding Predicate Encodings into Pair Encodings

In this section we provide an embedding that produces a valid information-
theoretic pair encoding from every valid predicate encoding (see De�nitions 24
and 26 for predicate encodings and pair encodings respectively).
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De�nition 29 (Embedding to Pair Encodings). Given a ps, r, wq-predicate en-
coding pe “ psE, rE, kE, sD, rDq, we de�ne the embedding Embppeq “ pEnc1pe,
Enc2pe,Pairpeq as follows:

‚ Enc1pepxq “ pc0, cq, where c0ps0,hq “ s0, cps0,hq “ s0 ¨ sExh

‚ Enc2pepyq “ pk0,kq, where k0pα, r1,hq “ r1, kpα, r1,hq “ α ¨kEy`r1 ¨rEyh

‚ Pairpepx, yq “

ˆ

0 rDJx,y
´sDx,y 0s,r

˙

All variables s “ ps0q and r “ pr1q appear in the clear in the Enc1 and
Enc2 polynomials respectively. This simpli�es the pair encoding's information-
theoretical security notion into one equivalent to the privacy of the predicate
encoding (see proof of Theorem 12).

Theorem 12 (Correctness of the embedding). If pe “ psE, rE, kE, sD, rDq is
a valid ps, r, wq-predicate encoding for P, then Embppeq is a valid information
theoretic ps` 1, r ` 1, wq-pair encoding for P.

Proof. Verifying correctness of the pair encoding is a simple check. For perfect
security we need to check that, when px, yq R P, the following two distributions
are identical:

α, s0Ð
$ Zp; r1Ð

$ Z˚p ; hÐ$ Zwp ; return ps0, s0 ¨ sExh, r1, r1 ¨ rEyhq ”

s0Ð
$ Zp; r1Ð

$ Z˚p ; hÐ$ Zwp ; return ps0, s0 ¨ sExh, r1, r1 ¨ rEyh` α ¨ kEyq

Since both distributions provide s0 and r1 in the clear, the above checking is
equivalent to the following:

hÐ$ Zwp ; return psExh, rEyhq ”

αÐ$ Zp; r1Ð
$ Z˚p ; hÐ$ Zwp ; return psExh, rEyh` α{r1 ¨ kEyq

but those distributions are identical due to the α-privacy of the predicate en-
coding3. l

Our embedding shows that every predicate encoding can be transformed into
a perfectly secure pair encoding. In fact, after applying the compiler from [9] to
the embedding of a predicate encoding, we get the same predicate encryption
scheme that the one provided by the compiler from [76].

We conclude that predicate encodings can be transformed into a very special
class of pair encodings : encodings that allow decryption with 2 pairings and
have only one element of randomness in both, ciphertexts and secret keys (what
makes them very e�cient).

3Note that αÐ$ Zp, r1Ð
$ Z˚p and therefore, α{r1 distributes uniformly over Zp, so we can

apply the α-privacy property from the predicate encoding.
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4.5.2 Comparison between encoding transformations

Attrapadung proposed generic transformations of pair encodings [28, 30]. In
particular, he proposed the conjunction and dual transformations. In this sec-
tion we compare these transformations with the ones proposed in this work.
For this, we compare the conjunction of two pair encodings, (embedded from
predicate encodings) with the embedding of the conjunction of a ps1, r1, w1q-
predicate encoding pe1 “ psD1, rE1, kE1, sD1, rD1

q and a ps2, r2, w2q-predicate
encoding pe2 “ psD2, rE2, kE2, sD2, rD2

q, i.e.,

Embppe1
^pred pe

2
q vs Embppe1

q ^pair Embppe2
q

where ^pred and ^pair are the conjunction of predicate encodings and pair en-
codings respectively. Note that ^pred corresponds to the transformation from
our Theorem 7. On the other hand, for ^pair we use the conjunction proposed
in [30].

Embppe1
^pred pe

2
q “

$

&

%

Enc1ppx1, x2qq “ pc0, c1, c2q

Enc2ppy1, y2qq “ pk0,k1,k2q

Pairppx1, x2q, py1, y2qq “ Epx1,x2q,py1,y2q

where h “ ph0,h1,h2q and

c0ps0,hq “ s0

c1ps0,hq “ s0 ¨ sE1
x1
h1

c2ps0,hq “ s0 ¨ sE2
x2
h2

k0pα, r1,hq “ r1

k1pα, r1,hq “ pα ` h0q ¨ kE1
y1
` r1 ¨ rE1

y1
h1

k2pα, r1,hq “ pα ´ h0q ¨ kE2
y2
` r1 ¨ rE2

y2
h2

Epx1,x2q,py1,y2q “
1

2

¨

˝

0 rD1J
x1,y1

rD2J
x2,y2

´sD1
x1,y1

0s1,r1 0s1,r2
´sD2

x2,y2
0s2,r1 0s2,r2

˛

‚

Embppe1
q ^pair Embppe2

q “

$

&

%

Enc1ppx1, x2qq “ pc0, c1, c2q

Enc2ppy1, y2qq “ pk0,k1, k2,k3q

Pairppx1, x2q, py1, y2qq “ Epx1,x2q,py1,y2q

where h “ ph1,h2q and

c0ps0,hq “ s0

c1ps0,hq “ s0 ¨ sE1
x1
h1

c2ps0,hq “ s0 ¨ sE2
x2
h2

k0pα, pr1, r2, r3q,hq “ r1

k1pα, pr1, r2, r3q,hq “ r3 ¨ kE1
y1
` r1 ¨ rE1

y1
h1

k2pα, pr1, r2, r3q,hq “ r2

k3pα, pr1, r2, r3q,hq “ pα ´ r3q ¨ kE2
y2
` r2 ¨ rE2

y2
h2

Epx1,x2q,py1,y2q “

¨

˝

0 rD1J
x1,y1

0 rD2J
x2,y2

´sD1
x1,y1

0s1,r1 0s1 0s1,r2
0s2 0s2,r1 ´sD2

x2,y2
0s2,r2

˛

‚
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The resulting pair encodings are di�erent. The �rst one (result of our con-
junction) does not introduce new random variables and does not increase the
number of pairings for decryption. On the other hand, the second conjunc-
tion adds new random variables to key generation and increases the number of
pairings needed during decryption. This overhead will be ampli�ed if nested
conjunctions are used.

We now present a comparison for the dual transformation. Let pe “ psD, rE, kE,
sD, rDq be a ps, r, wq-predicate encoding. We compare

EmbpDualpredppeqq vs DualpairpEmbppeqq

where Dualpairp¨q represents the dual conversion for pair encodings proposed in
[30, Section 4], while Dualpredp¨q corresponds to the transformation from our
Theorem 9.

EmbpDualpredppeqq “

$

&

%

Enc1pyq “ pc0, c1q

Enc2pxq “ pk0, k1,k2q

Pairpy, xq “ Ey,x

where h “ ph0,h1q and

c0ps0,hq “ s0

c1ps0,hq “ h0 ¨ s0 ¨ kEy ` s0rEyh1

k0pα, r1,hq “ α ` h0

k1pα, r1,hq “ r1

k2pα, r1,hq “ sExh1

Ey,x “

ˆ

1 0 sDJx,y
0r ´rDx,y 0r,s

˙

EmbpDualpairppeqq “

$

&

%

Enc1pyq “ pc0, c1, c2q

Enc2pxq “ pk0, k1,k2q

Pairpy, xq “ Ey,x

where h “ ph0,h1q and

c0pps0, s1q,hq “ s0

c1pps0, s1q,hq “ s1

c2pps0, s1q,hq “ h0 ¨ s0 ¨ kEy ` s1rEyh1

k0pα, r1,hq “ α ` h0 ¨ r1

k1pα, r1,hq “ r1

k2pα, r1,hq “ r1 ¨ sExh1

Ey,x “

¨

˝

1 0 0Js
0 0 sDJx,y
0r ´rDx,y 0r,s

˛

‚

4.6 Constructions

We provide new instances of predicate encodings to achieve predicate encryption
schemes with new properties or better performance.
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Figure 4.1: Scalability of the PE for revocation.

4.6.1 Combining predicates

4.6.1.1 Dual-Policy ABE

Dual-Policy Attribute Based Encryption [28, 30] has already been considered in
the pair encodings framework. It combines KP-ABE and CP-ABE into a single
construction that simultaneously allows two access control mechanisms. The
main advantage is the possibility of considering policies over objective attributes
(associated to data) and policies over subjective attributes (associated to user
credentials) at the same time.

Our combinations of predicate encodings allow us to create predicate en-
cryption constructions for Dual-Policy ABE in the framework of pair encodings
and tag-based encodings. In particular, given an arbitrary predicate encoding
for P : X ˆ Y Ñ t0, 1u, applying Theorems 9 and 7 we get an encoding for
DP-ABE, i.e., for the predicate P‹ : pX ˆ Yq ˆ pY ˆ X q Ñ t0, 1u de�ned as

P‹ppx, yq, py1, x1qq “ 1 i� Ppx, yq ^ Ppy1, x1q

4.6.1.2 Revocation

Another application of our combinations is predicate encryption with revocation,
by combining a boolean formula predicate encoding with a broadcast encryption
predicate encoding. The former is used to encode the actual policy of the scheme,
while the latter takes care of revocation.

Broadcast encryption has been considered in the literature to approach re-
vocation [110, 134, 152]. In broadcast encryption, a broadcasting authority en-
crypts a message in such a way that only authorized users will be able to decrypt
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P P̄

attributes = ta, b, c, du attributes = tā, b̄, c̄, d̄u

x “ pa^ cq _ d x “ pā_ c̄q ^ d̄

y “ ta, cu y “ tb̄, d̄u

Ppx, yq “ 1 i� xpyq P̄px, yq “ 1 i�  xpyq

Figure 4.2: Equivalent encodings of a policy using P (CP-ABE) on the left and
P̄ (negated CP-ABE) on the right.

it. This can be expressed with the predicate Ppx, iq“1 if, and only if, xi“1,
where x P X “ t0, 1un and i P Y “ rns. A drawback is that the number of
users in the system, n, is polynomial size. Figure 4.1 shows the performance
of predicate encryption built from a predicate encoding that combines boolean
formulas with broadcast encryption. The system supports thousands of users
in reasonable time.

4.6.2 Improved predicate encodings

In this section we propose new predicate encodings that are more e�cient than
some of the encodings proposed previously in [76] and implement a general
library4 for predicate encryption with support for predicate encodings and pair
encodings to evaluate their performance.

Our encodings are built by applying Theorem 8 to obtain negated encodings
and applying Theorem 5 to simplify the negated versions into (some times) more
e�cient encodings. However, the predicate associated to these new encodings
is negated, but if inputs are also negated, the predicate will be equivalent.
Figure 4.2 illustrates this idea. On the left, there is a boolean formula CP-
ABE for 4 attributes ta, b, c, du. On the right side, secret keys and policies
are modi�ed so that the negated version is equivalent. The attribute universe is
formed by the negated attributes, secret keys are formed by all negated attributes
do not appear in the original key as normal attributes, policies are negated and
expressed in Negation Normal Form (NNF).

4.6.2.1 Boolean formulas

In [76], the authors propose two predicate encoding (KP and CP versions) for
monotonic boolean formulas. The predicate they consider is a particular case
of a Linear Secret Sharing scheme [137]. Let X “ t0, 1un,Y “ Znˆkp for some
n, k P N,

Ppx,Mq “ 1 i�
`

1 0 k´1. . . 0
˘

P row
span xMxy

4Source code available at https://github.com/miguel-ambrona/abe-relic.
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where Mx denotes the matrix M �ltered by x, i.e., Mx includes the i-th row of
M i� xi “ 1.

It has been shown [146] that for every5 monotonic boolean formula f with
attributes from X there exists a matrix M P Y such that for every x P X ,
fpxq ô Ppx,Mq. The key-policy predicate encoding from [76] is the following,

sEx “
`

diagpxq 0n,k´1

˘

rEM “
`

In Mt2,...,ku

˘

kEM “
`

Mt1u

˘

where Mt1u denotes the �rst column of matrix M , Mt2,...,ku represents the rest
of the matrix. We do not include explicit decryption functions sD and rD, but
they can be computed e�ciently by Gaussian elimination.

In the above encoding, the number of elements in secret keys and ciphertexts
is always maximal, it equals the number of (possibly duplicated) attributes, even
for small policies. Furthermore, the maximum number of and-gates in a policy
must be �xed a priori (because it is related the the number of columns in the
matrix).

We propose the following improved predicate encoding for (negated) key-
policy monotonic boolean formulas6, which is an equivalent predicate if instantia-
ted with negated inputs. Let X “ t0, 1un and Y “ Znˆkp ,

sEx “ In ´ diagpxq rEM “MJ kEM “
`

1 0 k´1. . . 0
˘J

In our encoding, the number of columns has been reduced up to half7. Further-
more, the size of secret keys is proportional to the complexity of policies. In
particular, it is equal to the number of and-gates in the policy (or equivalently,
the number of or-gates in the non-negated version). Note that our improvement
also works in the ciphertext-policy case.

In Figure 4.3 we present a comparison between our improved encoding for
key-policy monotonic boolean formulas and the original one. To this end, we
generate random boolean formulas for di�erent sizes, starting from a random set
of leaf nodes and combining them with boolean operators _ and ^. Our tables
report on the average time for each algorithm. Our encoding needs 50% less
time than the original algorithms for setup, encryption and key generation. For
decryption the performance is similar. All the analyzed schemes were instan-
tiated with the same compiler, therefore all achieve the same level of security
(under SXDH assumption). In terms of secret key size, our encoding is smaller
in general (in the worst case, when all the gates in the policy are or-gates, key
sizes are equal).

5Where every attribute appears at most once and the number of and-gates is lower than
k (one could overcome the one-use restriction by considering duplicated attributes).

6See Section 4.8 for more details about how we obtained this encoding.
7Being half when the bound on the number of and-gates is maximal.
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Figure 4.3: Improved predicate encoding for boolean formulas vs original en-
coding.

4.6.2.2 Arithmetic span programs

Chen et al. proposed in [76] a predicate encoding for Arithmetic Span Programs
(ASP). That is, an encoding for the predicate P de�ned as follows. Let X “ Znp ,
Y “ Znˆkp ˆ Znˆkp , for some n, k P N; for every x P X and every pY, Zq P Y ,

Ppx, pY, Zqq “ 1 i�
`

1 0 k´1. . . 0
˘

P row
span xdiagpxqY ` Zy

In [130], Ishai and Wee show how to relate Arithmetic Span Programs com-
putations of polynomial functions over a �nite �eld F, i.e., functions f : Fn Ñ F
that only use addition and multiplication over the �eld. Therefore, the above
predicate can be seen as fpxq “ 0, where f is the polynomial function induced
by pY, Zq. Let X “ Znp , Y “ Znˆkp ˆ Znˆkp , the original predicate encoding for
arithmetic span programs proposed in [76] is the following:

sEx “
`

diagpxq In 0n,k´1

˘

rEpY,Zq “

ˆ

In 0n,n Yt2,...,lu
0n,n In Zt2,...,lu

˙

kEpY,Zq “

ˆ

Yt1u
Zt1u

˙
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Figure 4.4: Improved predicate encoding for ASP vs original encoding.

We present a more e�cient encoding for (negated8) arithmetic span programs:

sEx “
`

diagpxq ´In
˘

rEpY,Zq “
`

ZJ Y J
˘

kEpY,Zq “
`

1 0 k´1. . . 0
˘J

Figure 4.4 shows the performance of our new encoding for KP-ABE for
Arithmetic Span Programs compared to the original encoding from [76]. As we
expected, our encoding needs 66% of the time required for the original encoding
for setup, encryption and key generation. Additionally, secret key size is halved
with our encoding.

4.6.3 Extra features

In this section we consider new theoretical results that can be proved thanks
to our algebraic characterization of α-privacy and can be used to produce new
predicate encodings enhanced with extra properties.

8In [130] there is a modi�cation of their algorithm that produces matrices pY, Zq such that
the predicate associated is fpxq ‰ 0 (the double negation will cancel out).
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4.6.3.1 Attribute-hiding for boolean formulas

Chen et al. proposed an extension of the compiler in [76] to build weakly
attribute-hiding predicate encryption schemes [66, 138]. In a weakly attribute-
hiding scheme, the ciphertext attribute x remains secret for unauthorized users,
that only learn the fact that their secret keys are not valid. This additional
compiler needs to be instantiated with predicate encodings satisfying additional
properties. The following is a de�nition from [76].

De�nition 30 (Attribute-Hiding Encodings). A ps, r, wq-predicate encoding,
psE, rE, kE, sD, rDq for P : X ˆ Y Ñ t0, 1u is attribute-hiding if it veri�es the
additional requirements:

x-oblivious reconstruction: sDx,y and rDx,y are independent of x.

attribute-hiding: for all px, yq R P,

wÐ$ Zwp ; return psExw, rEywq ” sÐ$ Zsp; rÐ$ Zrp; return ps, rq

where ” denotes equality of distributions.

The following theorem relates the second property with our alternative def-
inition of predicate encodings:

Theorem 13 (Algebraic characterization of attribute-hiding). Let p P N be a
prime, let s, r, w P N and let S P Zsˆwp , R P Zrˆwp , k P Zrp. The following are
equivalent:

‚ wÐ$ Zwp ; return pSw, Rwq ” sÐ$ Zsp; rÐ$ Zrp; return ps, rq

‚ rank

ˆ

S
R

˙

“ s` r

Proof. Given ps, rq P ZspˆZrp, we de�ne Γs,r “ tw P Zwp : Sw “ s ^ Rw “ ru.
The condition on the second bullet holds i� w ´ s ´ r ě 0 and the cardinality
of Γs,r is pw´s´r. Additionally, |Γs,r| is independent from r and s i� the two
distributions from the �rst bullet are identical. l

Note that for every ps, r, wq-predicate encoding psE, rE, kE, sD, rDq that is
attribute-hiding, there exists an equivalent ps, 1, wq-predicate encoding. This
is because rD is independent from x and thus, we can apply our optimization
Theorem 5 with matrices By “ rDJx,y P Z1ˆw

p , Ax “ Is, C “ Iw. Therefore, the
class of predicates that can be built from attribute-hiding encodings is included
in the class of predicates achieved from ps, 1, wq-predicate encodings.
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Further, note that our disjunction and conjunction combinations for predi-
cate encodings (Theorems 6 and 7 respectively) preserve the notion of attribute-
hiding9. Exploiting this fact, we propose a Policy-Hiding ABE scheme for non-
monotonic boolean formulas expressed in DNF (Disjunctive Normal Form). The
inner product can be used to encode conjunctions [138]. More concretely, let
y P t0, 1un Ď Znp . We establish that the i-th attribute ai appears in a secret key
for y i� yi “ 1. Let S, S̄ Ď taiuni“1 be sets such that S X S̄ “ H,

ľ

aPS

a ^
ľ

aPS̄

ā ô10 xJy “ |S| where @i P rns, xi “

$

&

%

1 if ai P S
´1 if ai P S̄
0 otherwise

Note that the ZIPE predicate encoding from [76, Appendix A.1] can be modi�ed
into an attribute-hiding encoding for the predicate Pppx, γq,yq “ 1 i� xJy “ γ
(see Section 4.9.1).

Therefore, with a disjunction of k predicate encodings like the former we can
encode boolean formulas that have at most k disjuncts. Note that the result-
ing encoding is attribute-hiding but it is not x-oblivious. However, without the
knowledge of the policy x, one can guess for the disjunct his secret key satis�es
(if any). In this way, a valid key will be enough to decrypt after at most k
decryption tries (one for every disjunct).

4.6.3.2 Delegation

Delegation of keys is a desirable property for every predicate encryption scheme.
Roughly, it allows the owner of a secret key to weaken his key creating a new one
that is less powerful than the original one. This property can be used to achieve
forward secrecy (see [72] for an application to ABE that supports delegation),
where past sessions are protected from the compromise of future secret keys. To
achieve this goal, users can periodically weaken their secret keys and destroy the
more powerful ones. In this way, past ciphertexts cannot be decrypted any more
and thus, they are protected against the theft of future keys. Delegation is also
required for Hierarchical Identity Based Encryption (HIBE). More formally, we
say that a predicate P : X ˆY Ñ t0, 1u supports delegation if there is a partial
ordering ĺ on Y such that for every x P X , if Ppx, yq “ 1 and py ĺ y1q, then
Ppx, y1q “ 1.

Delegation has been considered in [76] as the property of some predicate
encodings. We propose a generic method to convert any predicate encoding
into one supporting delegation.

9Conjunction also preserves x-oblivious reconstruction, while disjunction does not.
10This equivalence holds when |S| ă p, but in practice p is a large prime.
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Let U “ ta, b, cu be the set of attributes. We consider the predicate encoding
for monotonic boolean formulas from [76]. Let X “ t0, 1u3,Y “ Z3ˆ2

p ,

sEx “
`

diagpxq 03,2

˘

rEM “
`

I3 Mt2u

˘

kEM “
`

Mt1u

˘

The following is the encoding of a key for the formula pa_ cq ^ b, enhanced for
delegation according to Theorem 14 (with k “ 1),

rEM “

¨

˝

1 0 0 1 0
0 1 0 1 0
0 0 1 1 0

0 0 0 0 1

˛

‚ kEM “

˜

1
0
1

0

¸

Let's assume we want to weaken this key to one for the formula a^ b^ c. Note
that in this case we want to make an update of the matrix M :

M “

ˆ

1 1
0 1
1 1

˙

encodes pa_ cq ^ b M 1
“

ˆ

1 1 1
0 1 1
1 1 0

˙

encodes a^ b^ c

It can be done by multiplying rEM from the left by A

rE1
M “

¨

˚

˚

˚

˚

˝

1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 0

˛

‹

‹

‹

‹

‚

loooooooooooooooomoooooooooooooooon

A

¨

¨

˚

˚

˚

˚

˝

1 0 0 1 0
0 1 0 1 0
0 0 1 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

loooooooooooooooooooomoooooooooooooooooooon

rEM

“

¨

˚

˚

˚

˚

˝

1 0 0 1 1
0 1 0 1 1
0 0 1 1 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

kE1
M “ A ¨ kEM “

¨

˚

˚

˚

˚

˝

1
0
1
0

˛

‹

‹

‹

‹

‚

Figure 4.5: Example of delegation of keys for monotonic boolean formulas.
Since A is a linear function, it can be computed in the exponent from the given
key.

Theorem 14 (Delegation). For every ps, r, wq-predicate encoding psE, rE, kE,
sD, rDq for P : X ˆ Y Ñ t0, 1u, for every k P N, psE1, rE1, kE1, sD1, rD1q de�ned
below is a valid ps, r ` k, w ` kq-predicate encoding for P.

sE1x “
`

sEx 0s,k
˘

rE1y “

ˆ

rEy 0r,k
0k,w Ik

˙

kE1y “

ˆ

kEy
0k

˙

sD1x,y “ sDx,y rD1x,y “

ˆ

rDx,y

0k

˙

Proof. Correctness can be easily checked. For privacy, let px, yq R P and let
w P Zwp be such that sExw “ 0s and rEyw “ kEy. Note thatw1J “

`

wJ 0Jk
˘

is a witness of privacy for psE1, rE1, kE1, sD1, rD1q. l
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4.7. Flexible boolean combinations

The additional set of not-null rows in rE1y can be used to weaken the linear
span of rEy, what directly modi�es the predicate. In particular, this method
works really well for monotonic boolean formulas (see Figure 4.5 for an exam-
ple).

4.7 Flexible boolean combinations

Boolean combinations of predicate encodings can be applied dynamically, i.e.,
they can be combined by leaving placeholders P ’ P1 that will be chosen during
encryption or key generation. The following theorem shows how to dynamically
combine two predicates making the combinator part of the secret key sky.

Theorem 15 (Flexible combination of predicate encodings). For every ps1, r1, w1q-
predicate encoding psE1, rE1, kE1, sD1, rD1

q for P1 : X1 ˆ Y1 Ñ t0, 1u and every
ps2, r2, w2q-predicate encoding psE2, rE2, kE2, sD2, rD2

q for P2 : X2 ˆ Y2 Ñ t0, 1u,
there exists a ps1`s2, r1`r2, w1`w2`1q-predicate encoding psE, rE, kE, sD, rDq
for the predicate P : pX1,X2q ˆ pY1,Y2, t_,^uq Ñ t0, 1u such that:

Pppx1, x2q, py1, y2,’qq ô P1px1, y1q ’ P2px2, y2q

Concretely,

sEpx1,x2q “

ˆ

sE1
x1

0s1,w2 0s1
0s2,w1 sE2

x2
0s2

˙

sDpx1,x2q,py1,y2,’q “
1

2

ˆ

sD1
x1,y1

sD2
x2,y2

˙

rEpy1,y2,’q “

ˆ

rE1
y1

0r1,w2 f’ ¨ kE1
y1

0r2,w1 rE2
y2

´f’ ¨ kE2
y2

˙

rDpx1,x2q,py1,y2,’q “
1

2

ˆ

rD1
x1,y1

rD2
x2,y2

˙

kEpy1,y2,’q “

ˆ

kE1
y1

kE2
y2

˙

where f’ is de�ned as 1 if ’“ ^ and 0 if ’“ _.

Proof. This Theorem follows straightforwardly from Theorems 6 and 7. l

Note that our Theorem 9 gives us an equivalent version of the above theorem,
where the placeholder is part of the ciphertext ctx. Figure 4.6 presents a possible
application of a �exible �xed-structure combination of boolean operators. It
encodes the predicate Ppx, yq “ 1 i� x ě y, where X “ Y “ t0, 1u4 (4-bit
strings). Note that the leaf nodes are IBE predicate encodings (one of the
simplest predicate encodings).
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4. ABE: Algebraic Characterization of Privacy

Figure 4.6: Example of �xed structure for inequalities.

4.8 Obtaining more e�cient encodings

We recall the encoding from [76] for KP-monotonic boolean formulas (mentioned
in out Section 4.6.2.1). Let X “ t0, 1un,Y “ Znˆkp for some n, k P N,

Ppx,Mq “ 1 i�
`

1 0 k´1. . . 0
˘

P row
span xMxy

where Mx denotes the matrix M �ltered by x, i.e., Mx includes the i-th row of
M i� xi “ 1.

sEx “
`

diagpxq 0n,k´1

˘

rEM “
`

In Mt2,...,ku

˘

kEM “
`

Mt1u

˘

whereMt1u denotes the �rst column of matrixM ,Mt2,...,ku represents the rest of
the matrix. We can directly apply our negation transformation from Theorem 8
and get the following encoding for (negated) monotonic boolean formulas:

sE1x “

ˆ

diagpxq ´In 0n,k´1 0n,n
0k´1,n 0k´1,n ´Ik´1 0k´1,n

˙

rE1M “

¨

˝

0n,n In 0n,k´1 In
0k´1,n 0k´1,n Ik´1 pMt2,...,kuq

J

0Jn 0Jn 0J
k´1

pMt1uq
J

˛

‚ kE1M “

¨

˝

0n
0k´1

1

˛

‚

We will simplify the above encoding by using our Theorem 5. We choose the
identity matrix for Ax and BM and certain matrix C that satis�es the conditions
of the theorem, i.e., for every pair11 px, yq R P̄, the column span of C contains
at least one witness w such that sE1xw “ 0n`k´1 and rE1Mw “ kE1M . Let

11We denote by P̄ the negated predicate of P, i.e., px,Mq P P̄ô px,Mq R P.
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4.9. Concrete encodings

px,Mq R P̄. Let w “ pw1,w2,w3,w4q P Znp ˆ Znp ˆ Zk´1
p ˆ Znp . For w to be a

valid witness, it needs to verify
$

’

’

’

’

&

’

’

’

’

%

diagpxqw1 ´w2 “ 0n`k´1

´w3 “ 0k´1

w2 `w4 “ 0n
w3 ` pMt2,...,kuq

Jw4 “ 0k´1

pMt1uq
Jw4 “ 1

Since px,Mq R P̄, there exist a P Znp such that aJdiagpxqM “
`

1 0 k´1. . . 0
˘

.
Note that if we choose w1 “ w2 “ diagpxqa, w3 “ 0k´1, w4 “ ´diagpxqa, then
w is a valid witness, since all the equations are satis�ed12. This implies that
the matrix

C “

¨

˚

˚

˝

In
In

0k´1,n

´In

˛

‹

‹

‚

contains the valid witness w described above and can be used to simplify the
encoding into sE2x “ sE1xC, rE2M “ rE1MC, kE2M “ kE1M . That is,

sE2x “

ˆ

diagpxq´In
0k´1,n

˙

rE2M “

¨

˝

0n,n
´pMt2,...,kuq

J

´pMt1uq
J

˛

‚ kE2M “

¨

˝

0n
0k´1

1

˛

‚

Now, the matrices

Ax “
`

In 0n,n
˘

BM “

ˆ

0n,n 0k´1,k´1 ´1
0n,n Ik´1 0

˙

verify the conditions of our Theorem 5 and when applied to the encoding sE2,
rE2, kE2 the encoding presented in Section 4.6.2.1 for negated monotonic boolean
formulas.

4.9 Concrete encodings

4.9.1 Predicate encoding for γ-inner product (modi�ed from [76])

Let n P N and let X “ Znp ˆZp, Y P Znp . The following is a pn`1, 1, n`2q-valid
predicate encoding for the predicate Pppx, γq,yq “ 1 i� xJy “ γ,

sEx “

ˆ

x In 0n
γ 0Jn 1

˙

rEy “
`

0 yJ ´1
˘

kEy “
`

1
˘

12Observe that diagpxqdiagpxq “ diagpxq because x P t0, 1un.
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sDJx,y “
`

yJ ´1
˘

rDx,y “
`

1
˘

It is an attribute-hiding predicate encoding.

4.9.2 Generalized predicate encoding for broadcast encryption

We generalize the predicate encoding for broadcast encryption from [76]. Let
X “ Znp , Y “ rns ˆZp, we consider the predicate Ppx, pi, γqq “ 1 i� xi “ γ. As
in [76], it is convenient to express the above predicate as follows:
X “ pZt2p qt1 , Y “ rt1s ˆ rt2s ˆ Zp and

Pppx1, . . . ,xt1q, pi1, i2, γqq “ 1 i� xJi1ei2 “ γ

where n “ t1t2 and pi1, i2q is the unique pair of integers satisfying i “ pi1´1q ¨
t2 ` i2 and 0 ă i2 ď t2. Also, pe1, . . . , et2q is the standard basis of Zt2p . The
following is a valid pt1, t2, t1 ` t2q-predicate encoding for the above predicate:

sEx “

¨

˝

xJ1
It1

...
xJt1

˛

‚ rEpi1,i2,γq “
`

0t2,pi1´1q ei2 0t2,pt1´i1q γ ¨ It2
˘

kEpi1,i2,γq “ ei2 sDx,pi1,i2,γq “ ei1 rDx,pi1,i2,γq “ γ´1
¨ xi1

This encoding can be used to perform 2-dimensional broadcast encryption. That
is, users are divided in n groups and every user i has a unique identi�er γi.
Encryption can be done in such a way that at most one user from every group
will be able to decrypt.

4.9.3 Tag-based encoding for root sharing of polynomials

Let m,n P N and let X ,Y Ă ZprT s be the sets of polynomials of degree m and
n respectively with coe�cients over Zp. For fptq P X and gptq P Y , let P be the
predicate de�ned as Ppf, gq “ 1 i� Dt0 P Zp : fpt0q “ gpt0q “ 0. The following
is a valid pn,m,m` nq-tag-based encoding for P,

cEf“

¨

˚

˚

˚

˝

am . . . a0 0 n´1. . . 0

0 am . . . a0 0 n´2. . . 0
. . .

. . .

0 n´1. . . 0 am . . . a0

˛

‹

‹

‹

‚

kEg“

¨

˚

˚

˚

˝

bn . . . b0 0 m´1. . . 0

0 bn . . . b0 0 m´2. . . 0
. . .

. . .

0 m´1. . . 0 bn . . . b0

˛

‹

‹

‹

‚

where fptq “ amt
m ` ¨ ¨ ¨ ` a1t` a0 and gptq “ bnt

n ` ¨ ¨ ¨ ` b1t` b0.
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5
Attribute-Based Encryption in the

Generic Group Model

Never trust a computer you can't throw out a window.

Attributed to Steve Wozniak

In this work, we propose, implement, and evaluate automated methods for
proving security of ABE in the Generic (Bilinear) Group Model, for analyzing
the security of cryptographic assumptions and pairing-based schemes.

Our method is applicable to Rational-Fraction Induced ABE, a large class of
ABE that contains most of the schemes from the literature, and relies on a Mas-
ter Theorem, which reduces security in the GGM to a (new) notion of symbolic
security, which is amenable to automated veri�cation using constraint-based
techniques. We relate our notion of symbolic security for Rational-Fraction
Induced ABE to prior notions for Pair Encodings. Finally, we present several
applications, including automated proofs for new schemes.

5.1 Introduction

Our results and tools are specialized to prime order, asymmetric (Type III)
bilinear groups, with a pairing function e : G1 ˆG2 Ñ Gt, where G1 , G2, and
Gt are prime order groups. This setting is a natural choice to consider because
it supports more e�cient and compact implementations.

Attribute-Based-Encryption. Following several recent works [24, 190], we
focus on schemes where the ciphertext for x is of the form Jcxps, bqK1 , JsaKt ¨
M and the secret key for y is of the form Jkypa, b, rqK2. For correctness, we
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5. Attribute-Based Encryption in the Generic Group Model

require that whenever Ppx, yq “ 1, there should exist a degree 2 function of
cxpS,Bq, kypA,B,Rq that outputs SA, where S,B,A,R are formal variables
corresponding to the inputs s, b, a, r of cx, ky; the degree 2 function allows us to
compute JsaKt given Jcxps, bqK1 , Jkypa, b, rqK2.

We propose ABE schemes based on encodings cx, ky de�ned in terms of ratio-
nal fractions of polynomials, which allows us to capture larger classes of schemes.
An example is the �petit IBE � [191], where cxpS,Bq “ pB ` xqS, kypA,B,Rq “
A{pB`yq and P corresponds to the equality predicate. To prove adaptive secu-
rity of these ABE in GGM, we require that the ABE satisfy a strengthening of
the symbolic security from Agrawal-Chase [11] to the many-key setting, namely
that there exists no degree two function of cxpS,Bq, tkypA,B,Rq : Ppx, yq “ 0u
that outputs SA. Looking ahead, note that many-key symbolic security is a
purely algebraic criterion, and therefore particularly amenable to analysis using
automated tools.

Next, we prove that if we restrict cx, ky to polynomials that satisfy some
structural requirements as in prior works [11, 26] and that the ABE satis�es
the (one-key) symbolic security from [11], then the ABE is adaptively secure
in GGM. This means that it su�ces for the automated tool to check the one-
key symbolic security criterion instead of the many-key variant. We note that
a similar result was shown in Agrawal-Chase [11], where they �rst apply a
transformation to the ABE scheme which blows up the ciphertext and key sizes
by a factor of 2, and showed that the ensuing ABE is adaptively secure in
the standard model; in contrast, we prove adaptive security of the ABE as is
in GGM. Compared to the latter schemes, our schemes are simpler and twice
as e�cient in terms of encryption time, decryption time, ciphertext and key
sizes, but we only achieve security in the idealized GGM model. We note that
all known non-trivial attacks on bilinear groups in use today are captured by
GGM. For this reason, we believe that our ABE schemes provide a compelling
alternative to less e�cient standard model schemes in practical applications
where performance is paramount.

Formally, we obtain both results in a uni�ed manner by showing that for
ABE captured by restricted polynomials cx, ky as in the latter, symbolic security
implies many-key symbolic security. We note that a few of the ABE schemes
captured by our framework have been informally claimed to be adaptively secure
in GGM (e.g. [124, footnote 1 (Chapter 6)]), but to the best of our knowledge,
our work provides the �rst formal treatment of adaptive security in GGM for a
broad class of schemes satisfying a simple algebraic criterion.

98



5.1. Introduction

IBE 1

IPE 2

CP-ABE

[AC17, A14]

KP-ABE [GPSW06]

Unbounded KP-ABE [RW13]
Unbounded CP-ABE [RW13]

IBE 2 [BB04]

IPE 1 [KSW08]
Single-Key Symbolic secure ABE

Thm.18

Many-Key Symbolic secure ABE
Thm.17

GGM secure ABE

Compact KP-ABE

Figure 5.1: Roadmap of our results. The statements marked with dotted arrows
were performed fully automatically with our tool (see Section 5.5), while plain
arrows denotes proofs by hand. We provide explicit proofs for all our results.

5.1.1 Approach

While we do not advocate proving security in the GGM over the standard model,
there are several reasons for our approach.

First, the GGM captures most algebraic attacks, making automated anal-
ysis in the GGM desirable for providing cryptographers early feedback during
the design of new constructions. Second, the Generic Group Model often ad-
mits schemes that are simpler, more e�cient, and ultimately more likely to be
deployed in real-world systems. Third, existing proofs of adaptive security of
ABE in the standard model are very challenging and full automation remains
beyond the state-of-the-art, despite recent progress [47]. Finally, GGM proofs
are generally considered to be fairly mechanical and sometimes claims are made
without proofs, e.g. [124, footnote 1 (Chapter 6)]; this makes GGM proofs a
useful target and test-bed for automated proofs.

5.1.2 Related work

Our work builds upon several areas, including ABE, GGM, and computer-aided
cryptography.

ABE. Designing adaptively secure and e�cient ABE schemes is hard, and
has been the focus of many prior works [144, 145, 162, 163, 188]. In 2014,
Wee [190] and Attrapadung [24] propose simpler primitives called encoding
and cryptographic compilers that turn secure encodings into adaptively secure
attribute-based encryption schemes for a broad range of predicates. Their work
is initially carried in the composite-order setting; in, Chen, Gay and Wee [76],
Agrawal Chase [10], and Attrapadung [26] adapt the compiler to the prime
order setting, using the notion of Dual System Groups (DSG) [77, 78]. More
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recently, Agrawal and Chase [11] propose a notion of symbolic security for pair
encodings, and show that every symbolically secure pair encoding is compiled to
an attribute-based encryption scheme that achieves full security under a q-type
assumption. In Chapter 4 we have provided an algebraic characterization of the
information-theoretic notion of α-privacy for predicate encodings. Agrawal and
Chase's work and ours leave open the possibility of building fully automated
tools for checking symbolic security or the algebraic characterization of privacy.

GGM. The Generic Group Model was introduced in [160, 182] to reason
about lower bounds for computing discrete logarithms and related problems.
Maurer [156] gives an alternative presentation; while the two presentations are
essentially equivalent, Maurer's presentation is more convenient for formalizing
the Master Theorem and as a basis for formal veri�cation. The GGM has been
used for analyzing a broad variety of assumptions and constructions.

Master Theorems for bilinear groups were introduced by Boneh, Boyen and
Goh in [63, 68]. There exist many others instances of Master Theorems; in
particular, previous works on automated analyses in the GGM (detailed below)
come with their own Master Theorem.

Computer-aided proofs. Barthe, Cederquist and Tarento [41] use the Coq

proof assistant for building machine-checked proofs of security in the Generic
Group Model. Their formalization is restricted to very simple examples.

Barthe and co-workers [43] develop an automated tool for analyzing security
assumptions in the GGM. Their tool is justi�ed by a Master Theorem which
reduces security in the Generic Group Model to a weaker notion of symbolic
security. However, their Master Theorem and their tool is primarily targeted
to analyze assumptions, rather than schemes. A follow-up [45] considers the
case of Structure-Preserving Signatures [2, 3, 4, 7, 44, 75] and harnesses the
automated analyzer with a synthesis algorithm, which is used to discover new
schemes. However, the tool is limited to prove security against a restricted
class of adversaries. In Chapter 3 we have extended prior Master Theorems to
a more general class of security experiments and provided constraint-solving for
proving symbolic security. However, our method in Chapter 3 does not consider
rational functions.

Beyond this, prime focus of computer-aided cryptography is to support
proofs in the standard model. Prior work uses a highly automated tool called
AutoGP for proving security of several IBE in the standard model [47]. However,
we are not aware of any prior work that uses computer-aided tools for reasoning
about ABE. It could be possible to use existing computer-aided tools such as
EasyCrypt [46] for building machine-checked proofs of security of ABE in the
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standard model; however, it would be very challenging to automate existing
proofs for the composite order case, and even more so for the prime order case.

Finally, there have been e�orts to integrate formal veri�cation in tool-
assisted cryptographic engineering approaches for pairing-based cryptography
[14]. There exist some similarities between our constraint-based method for
proving symbolic security and the techniques they use. However, the goals of
the two methods, and their justi�cation, are fundamentally di�erent.

5.1.3 Notation

We denote by appendpL, xq the act of adding an element x to the list L, and
for any i P N, we denote by Lris the i'th element of the L if it exists (lists are
indexed from index 1 on), or K otherwise. For any s P t1, 2, tu, we adopt the
convention JKKs “ K.

5.2 Rational-Fraction Induced ABE

In this section we de�ne a special class of so-called Rational-Fraction Induced
ABE (RFI-ABE), that captures all previous dual system ABE, but also allows
inversion in the exponent, thereby capturing ABE's that fall out of the scope of
dual system encryption, most notably the IBE from [191], as well as new ABE
described in Section 5.4.

We prove the adaptive security of RFI-ABE in the generic group model,
where it is assumed that no attack can make use of the algebraic structure of the
particular bilinear group that is used. As it is common in the literature, we prove
security in two steps. First, we prove a Master Theorem (Theorem 17) that
bounds the probability of distinguishing between the generic and the symbolic
models. Second (Lemma 4), we show that the advantage of any adversary in
the symbolic model is zero, provided some algebraic condition on the ABE
is satis�ed (this condition is de�ned as the symbolic security of the ABE). For
the sake of simplicity, our Master Theorem is specialized to capture the security
experiment of RFI-ABE, however, it can be generalized to capture more general
security games1.

5.2.1 Rational fractions

Polynomials. Let p be a prime, n P N. The set of multi-variate polynomials
over Zp with indeterminates X1, . . . , Xn is denoted by ZprX1, . . . , Xns. For a
polynomial P P ZprXs and a formal variable Y , we write P rX Ñ Y s to denote

1Note that a more general master theorem could require a looser bound.
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the polynomial in ZprY s where X is replaced by Y . We generalize this notation
for multivariate polynomials.

Rational fractions. Let p be a prime, n P N. A rational fraction is a pair
pf, gq P ZprX1, . . . , Xns ˆ ZprX1, . . . , Xns

˚. We use f{g to denote the rational
fraction pf, gq and we use f to denote pf, 1q. For any x P Znp such that gpxq “ 0,
we denote fpxq{gpxq “ K. We de�ne for all a P Zp, K ` a “ a ` K “ K and
a ¨ K “ K ¨ a “ K and we de�ne the degree of a rational fraction f{g as

degpf{gq :“ max tdegpfq, degpgqu

where degpfq and degpgq denote the degree of polynomials f and g, respectively.

Equivalence relation. We de�ne an equivalence relation „rf between ratio-
nal fractions by the clause

f1{g1 „rf f2{g2 ô f1 ¨ g2 “ f2 ¨ g1

where f1{g1 and f2{g2 are arbitrary rational fractions.

Operators. For any two rational fractions f1{g1, f2{g2 and α P Zp, let pg “
lcmpg1, g2q be the least common multiple of polynomials g1 and g2. We de�ne,

‚ Addition: f1{g2 `rf f1{g2 :“ pf1 ¨
pg
g1
` f2 ¨

pg
g2
q{pg.

‚ Scalar multiplication: α ¨ pf{gq :“ pα ¨ fq{g.

‚ Product: f1{g1 ¨rf f2{g2 :“ pf1 ¨ f2q{pg1 ¨ g2q.

Note that the set of rational fractions equipped with addition, scalar mul-
tiplication and product is an algebra over Zp. In particular, rational fractions
verify the associative property with `rf , we write

rf
ÿ

iPrns

αi ¨ fi{gi :“ α1 ¨ f1{g1 `rf . . .`rf αn ¨ fn{gn

for α1, . . . , αn P Zp, and rational fractions f1{g1, . . . , fn{gn. This is called a
linear combination of the rational fractions f1{g1, . . . , fn{gn. For any set of
rational fractions Γ, we denote by xΓy the set of all linear combinations of
rational fractions in Γ.

For any set of formal variables S1 and S2, f1{g2 P ZprS1s, and f2{g2 P ZprS2s,
we naturally extend the operators f1{g1 `rf f2{g2 and f1{g1 ¨rf f2{g2 to obtain
rational fractions in ZprS1 Y S2s.
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Very roughly, the following Lemma guarantees that a polynomial number of
summations of rational fractions, produces a rational fraction whose degree is
polynomially large.

Lemma 3. For any two rational fractions f1{g1, f2{g2, it holds

degpf1{g1 `rf f2{g2q ď degpf1{g1q ` degpf2{g2q .

Proof. Let rg1 and rg2 be such that g1 ¨ rg1 “ pg and g2 ¨ rg2 “ pg. We have,

degpf1{g1 `rf f2{g2q

“ degppf1 ¨ rg1 ` f2 ¨ rg2q{pgq

ď max tdegpf1 ¨ rg1q, degpf2 ¨ rg2q, degppgqu

“ max tdegpf1q ` degprg1q, degpf2q ` degprg2q, degppgqu

p˚q ď max tdegpf1q ` degpg2q, degpf2q ` degpg1q, degpg1q ` degpg2qu

ď max tdegpf1q, degpg1qu `max tdegpf2q, degpg2qu

“ degpf1{g1q ` degpf2{g2q

where p˚q is due to the fact that degprg1q ď degpg2q and degprg2q ď degpg1q. l

5.2.2 RFI-ABE

Let P : X ˆ Y Ñ t0, 1u be predicate, p be a prime, n P N and the following
deterministic poly-time algorithms (rational fractions are considered over Zp):

‚ sEpxq Ñ cpS,Bq. On input x P X , the sender encoding algorithm sE
outputs a vector of polynomials c “ pc1, . . . , c|ctx|q in the variables S “

pS0, . . . , Swq and the common variablesB “ pB1, . . . , Bnq. Without loss of
generality, we assume that the polynomials do not contain any monomial
Bi or any constant term. We the sake of computability, we also make the
assumption that the degree of variables Bi is not greater than 1 in any
monomial2.

‚ rEpyq Ñ kpR,B, Aq. On input y P Y , the receiver encoding algorithm rE
outputs a vector of rational fractions k “ pk1, . . . , k|sky|q in the variables
R “ pR1, . . . , Rmq, and the common variables B and A.

‚ Pairpx, yq Ñ E. On input x P X , y P Y , the Pair algorithm outputs a
matrix E P Z|ctx|ˆ|sky|

p ,

We say an ABE is pp, n, sE, rE,Pairq-RFI if it is as described in Figure 5.2.

2Observe that, under these assumptions, all polynomials c evaluate to zero for S “ 0w`1.
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Setupp1λ,X ,Yq:
G Ð GGenp1λq, bÐ$ Znp , αÐ$ Zp
Outputs msk :“ pb, αq, mpk :“ pJbK1, JαKtq P Gn

1 ˆGt

Encpmpk, x P X q:
cpS,Bq Ð sEpxq, s :“ ps0, . . . , swqÐ

$ Zw`1
p

Outputs ctx :“ Jcps, bqK1 P G|ctx|1 , κ :“ Jαs0Kt P Gt

KeyGenpmpk,msk :“ pb, αq, y P Yq:
kpR,B, Aq Ð rEpyq, rÐ$ Zmp
Outputs sky :“ Jkpr, b, αqK2 P G

|sky |
2

Decpmpk, ctx :“ JcK1, sky :“ JkK2q:

EÐ Pairpx, yq
Outputs JcJEkKt

Figure 5.2: pp, n, sE, rE,Pairq-RFI-ABE.

Degree of a RFI-ABE

We de�ne the degree of a RFI-ABE as the maximum degree over all the polyno-
mials that can be created by multiplying a polynomial from sEpxq with a poly-
nomial from rEpyq for any x P X and y P Y . The degree of a RFI-ABE allows to
bound the probability3 of inconsistent equality check between the generic model
and the symbolic model. More formally, given a pp, n, sE, rE,Pairq-RFI-ABE, let

dc :“ max t degpciq | i P r|ctx|s, cÐ sEpxq, x P X u
dk :“ max t degpkiq | i P r|sky|s, k Ð rEpyq, y P Yu

The degree of the pair encoding is de�ned by d :“ dc ¨ dk.

Correctness

The following theorem gives a su�cient condition for a RFI-ABE to be correct
according to the de�nition of correctness from Section 2.1.5.

3Note that, by Schwartz-Zippel, the probability that two di�erent polynomials over Zp,
evaluated uniformly at random, give the same output is bounded by the maximum degree of
the two, divided by p.
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Theorem 16 (Correctness). Let ABE be a pp, n, rE, sE,Pairq-RFI-ABE for pred-
icate P : X ˆ Y Ñ t0, 1u. If for all x P X , y P Y such that Ppx, yq “ 1, it holds
that cJEk „rf AS0, where c Ð sEpxq, k Ð rEpyq and E Ð Pairpx, yq, then,
ABE is correct in particular, for all x P X , y P Y,

Pr

»

–

pmsk,mpkq Ð Setupp1λ,X ,Yq
pctx, κq Ð Encpmpk, xq

sky Ð KeyGenpmpk,msk, yq
: Decpmpk, sky, ctxq ‰ κ

fi

fl ď
d |sky|

p

where d is the degree of ABE and the probability is taken over the coins of
algorithms Setup, Enc, KeyGen and Dec.

Proof. For x P X and y P Y , let c Ð sEpxq, k Ð rEpyq, E Ð Pairpx, yq, and
let f{g :“ cJEk. Note that f and g are polynomials in ZprS,R,B, As and
without loss of generality, we can assume g does not contain variables in S
because such variables appear only in c, which is a vector of polynomials and
not arbitrary rational fractions. If Ppx, yq “ 1, we have that f{g „rf AS0. In
particular, for all s P Zw`1

p , r P Zmp , b P Znp , α P Zp such that gpr, b, αq ‰ 0, we
have fps, r, b, αq{gpr, b, αq “ αs0, and the key computed by Dec corresponds
to the key computed by Enc on x. To �nish the proof, we need to bound the
probability of g evaluating to 0 on a random point. Observe that, thanks to
Lemma 3, if d is the degree of ABE, we have degpgq ď d |sky|. Therefore, the
probability of a failed decryption is bounded the probability of g evaluating to
0 on a random point, which by Schwartz-Zippel (Lemma 1), is upper-bounded
by d |sky|{p. l

5.2.3 Symbolic security.

We present an algebraic condition on RFI-ABE that is su�cient to make it
secure in the generic group model, as shown in Lemma 4 and Theorem 17.

De�nition 31 (Symbolic security of RFI-ABE). We say a pp, n, sE, rE,Pairq-
RFI-ABE is symbolically secure if for all x P X , there does not exist tEyuyPYx,

where for every y P Yx, Ey P Z|ctx|ˆ|sky|
p , such that

ÿ

yPYx

cpS,BqJEykypRy,B, Aq „rf AS0

where cpS,Bq Ð sEpxq, Yx Ď Y is the set of all y P Y such that Ppx, yq “ 0,
and for all y P Yx, Ry :“ pRy,1, . . . , Ry,mq is a vector of fresh variables and
kypRy,B, Aq Ð rEpyqpRÑ Ryq.

We show in the following lemma that the symbolic security above implies a
seemingly stronger security notion which, roughly, allows to go from security in
the private-key setting, to a public key setting.
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Lemma 4 (From public to private key). Let ABE be a pp, n, sE, rE,Pairq-RFI-
ABE. If ABE is symbolically secure, then, for all x P X , there does not exist
tEyuyPYx and γ P Zp, where for every y P Yx, Ey P Zpn`|ctx|qˆ|sky|

p ,such that
ÿ

yPYx

pB, cpS,BqqJEykypRy,B, Aq ` γA „rf AS0

where cpS,Bq Ð sEpxq, Yx Ď Y is the set of all y P Y such that Ppx, yq “ 0,
and for all y P Yx, Ry :“ pRy,1, . . . , Ry,mq is a vector of fresh variables and
kypRy,B, Aq Ð rEpyqpRÑ Ryq.

Proof. By contradiction, suppose there is x P X , tEyuyPYx and γ P Zp such
that

ř

yPYxpB, cpS,Bqq
JEykypRy,B, Aq ` γA „rf AS0. By evaluating the formal

variable Si for i P r0, ws to 0, we obtain
ř

yPYxpB,0|ctx|q
JEykypRy,B, Aq`γA „rf 0.

Therefore, it must be
ř

yPYxp0n, cpS,Bqq
JEykypRy,B, Aq „rf AS0, and thus, the

|ctx| lower rows of matrices Ey, say Ey P Z|ctx|ˆ|sky|
p for all y P Yx are such that,

ř

yPYx cpS,Bq
JEykypRy,B, Aq „rf AS0, which contradicts the symbolic security

of ABE. l

5.2.4 Security in the Generic Group Model.

Let ABE be a pp, n, sE, rE,Pairq-RFI-ABE for P : X ˆ Y Ñ t0, 1u, and A be an
adversary. For xxx P tGGM, SMu, we de�ne the experiments Expxxx

ABEp1
λ,Aq in

Figure 5.3. We de�ne the advantages:

Axxx

ABE,Apλq :“

ˇ

ˇ

ˇ

ˇ

1

2
´ Pr

“

Expxxx

ABEp1
λ,Aq Ñ 1q

‰

ˇ

ˇ

ˇ

ˇ

.

De�nition 32 (Adaptive security in the Generic Group Model). We say ABE is
adaptively secure in the generic group model if there exists a negligible function
negl such that for all p.p.t.adversaries A and for su�ciently large values of
λ P N: AdvGGMABE,Apλq ď neglpλq.

Very roughly, experiment Expxxx
p1λ,Aq is the security game where adversary

A is trying to break the ABE (see De�nition 11). However, there is a third party
who implements the group, so that the adversary can only access to the group
via handles. Internally, this third party keeps track of both, a symbolic repre-
sentation of group elements and a real one (by sampling random values when
required). The di�erence between ExpGGM and ExpSM is in equality checks, that
are answered by using the generic representation and the symbolic representa-
tion of group elements respectively. Our next theorem bounds the probability of
any distinguisher between ExpGGM and ExpSM. Approximately, the only chance
of distinguishing is that a bad event4 occurs. Theorem 17 bounds the probability
of a bad event happening.

4Equality checks in the symbolic representation and the generic representation di�er.
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ExpGGM SM
ABE p1λ,Aq:
cnt :“ 0, Leq

1 “ Leq
2 “ Leq

t “ L„1 “ L„2 “ L„t :“ r1s, Qchal “ Qsk :“ H,
bÐ$ Znp , αÐ$ Zp, B “ pB1, . . . , Bnq, βÐ$ t0, 1u,
appendpLeq

1 , bq, appendpLeq
t , αq, appendpL„1 ,Bq, appendpL„t , Aq,

β1 Ð AOadd,Opair,Oeq
cmp O„cmp,Ochalpα,β,¨q,Oskp1λ, pq,

if β1 “ β and Ppx, yq “ 0 for all x P Qchal, y P Qsk, output 1;
otherwise, output 0

Oaddps P t1, 2, tu, pi, jq P N2q:

appendpL„s , L
„
s ris `rf L

„
s rjsq, appendpLeq

s , L
eq
s ris ` L

eq
s rjsq

Opairppi, jq P N2q:

appendpL„t , L
„
1 ris ¨rf L

„
2 rjsq, appendpLeq

t , L
eq
1 ris ¨ L

eq
2 rjsq

Ochalpα P Zp, β P t0, 1u, x P X q:
cpS,Bq “ sEpxq, S :“ pS0, . . . , Swq,
κ‹0 :“ AS0, κ‹1 :“ U where U is a fresh formal variable,
sÐ$ Zwp , v‹0 :“ αs0, v‹1 :“ uÐ$ Zp,
append

`

L„1 , cpS,Bq
˘

, appendpL„t , κ
‹
βq, append

`

Leq
1 , cps, bq

˘

, appendpLeq
t , v

‹
βq,

Qchal :“ Qchal Y txu

Oskpy P Yq:
Rcnt :“ pRcnt,1, . . . , Rcnt,mq, kpR,B, Aq “ rEpyq, rcntÐ$ Zmp ,
appendpL„2 ,kpRcnt,B, Aqq, append

`

Leq
2 ,kprcnt, b, αq

˘

,
cnt :“ cnt`1, Qsk :“ Qsk Y tyu

Oeq
cmpps P t1, 2, tu, pi, jq P N2q:

Output 1 if Leq
s ris “ Leq

s rjs, otherwise output 0

O„
cmpps P t1, 2, tu, pi, jq P N2q:

Output 1 if L„s ris „rf L
„
s rjs, otherwise output 0

Figure 5.3: Experiments ExpGGM SM
ABE p1λ,Aq We require that A queries Ochal at

most once, and that Ppx, yq “ 0 for x P Qchal and all y P Qsk. In each procedure,
the components inside a colored frame are only present in the games marked
by the same frame.
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Gamekp1λ,Aq:
cnt :“ 0, Leq

1 “ Leq
2 “ Leq

t “ L„1 “ L„2 “ L„t :“ r1s, Qchal “ Qsk :“ H,
bÐ$ Znp , αÐ$ Zp, B “ pB1, . . . , Bnq, βÐ$ t0, 1u,
appendpLeq

1 , bq, appendpLeq
t , αq, appendpL„1 ,Bq, appendpL„t , Aq,

β1 Ð AOadd,Opair,Ocmppk,¨,¨q,Ochalpα,β,¨q,Oskp1λ, pq
if β1 “ β and Ppx, yq “ 0 for all x P Qchal, y P Qsk, output 1;
otherwise, output 0

Ocmppk P NY t0u, s P t1, 2, tu, pi, jq P N2q:

On the ν-th query:
‚ if ν ă k: output 1 if L„s ris „rf L

„
s rjs, otherwise output 0

‚ if ν ě k: output 1 if Leq
s ris “ Leq

s rjs, otherwise output 0

Figure 5.4: Gamek for k P r0, qeqs, for the proof of Theorem 17. We require
that A queries Ochal at most once, and that Ppx, yq “ 0 for x P Qchal and all
y P Qsk. We refer to Figure 5.3 for the description of oracles Oadd,Opair,Ochal

and Osk.

Security proof of the generic construction.

Our next result establishes that symbolically secure RFI-ABE are also secure
in the GGM.

Theorem 17 (From symbolic to generic security). Let ABE be a symbolically
secure pp, n, sE, rE,Pairq-RFI-ABE for P : X ˆ Y Ñ t0, 1u. Let λ P N be the
security parameter, and let A be an adversary that on input p1λ, pq, makes qsk,
qadd, qpair P N calls to oracles Osk, Oadd, Opair respectively, and exactly one call
to Ochal. We have:

AGGM
ABE,Apλq ď

6dpn` |ct| ` qsk |sk| ` qadd ` qpairq
4

p
,

where d is the degree of ABE, |ct| and |sk| are upper-bounds on the size of any
ciphertext and any secret key respectively.

Proof. The proof of Theorem 17 proceeds in two steps. First, we show that the
advantages AGGM

ABE,Apλq and ASM
ABE,Apλq are negligibly di�erent. Then, we argue

that ASM
ABE,Apλq “ 0, using the symbolic security of ABE.

For the �rst step, we proceed via a hybrid argument, using Gamek for k P
r0, qcmps, de�ned in Figure 5.4, and we denote by Advk the advantage of A in
Gamek. It is clear that Game0 is the same as ExpGGMABE p1

λ,Aq, and Gameqcmp is
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5.2. Rational-Fraction Induced ABE

the same as ExpSMABEp1
λ,Aq. We show how to transition from Gamek to Gamek`1

for all i P r0, qcmp ´ 1s in Lemma 6, but before, we prove the following helper
lemma.

Lemma 5. For all s P t1, 2, tu, f{g P L„s ,

degpf{gq ď 2d
`

2` pn` |ct|qqsk|sk|
˘

.

Proof of Lemma 5. First, note that for all s P t1, 2, tu, f{g P L„s is a linear
combination of rational fractions in pLs where

pL1 :“ tBj | j P rnsu Y tsEpxq |x P Qchalu

pL2 :“ trEpyq | y P Qsku

pLt :“ tA, κ‹βu Y tf1{g1 ¨rf f2{g2 | f1{g1 P pL1, f2{g2 P pL2u

Thus, for s P t1, 2u, f{g P L„s , by Lemma 3, we have degpf{gq ď d |pLs|. Fur-
thermore, for f{g P L„t we have degpf{gq ď 2d |pLt|. We conclude the proof
using the fact that |pL1| ď n` |ct|, |pL2| ď qsk |sk|, |pLs| ď 2` |pL1| |pL2|. l

Lemma 6. For all k P r0, qcmps,

|Advk`1 ´ Advk| ď
12d

`

2` pn` |ct|qqsk|sk|
˘

p
.

Proof of Lemma 6. We bound |Advk`1´Advk|, by using the fact that Gamek`1

and Gamek only di�er on the k` 1-th query to Ocmp. In particular, the output
of Ocmppk, s, pi, jqq, is di�erent in these two games if

(1) L„s ris „rf L
„
s rjs but L

eq
s ris ‰ Leq

s rjs, or

(2) Leq
s ris “ Leq

s rjs but not L
„
s ris „rf L

„
s rjs.

When considering event (1), we write L„s ris “ fi{gi and L„s rjs “ fj{gj. Since
fi{gi „rf fj{gj, we have that for all points x, it holds fipxq¨gjpxq “ fjpxq¨gipxq.
Moreover, if gipxq, gjpxq are not null, then pfi{giqpxq “ pfj{gjqpxq, that is,
Leq
s ris “ Leq

s rjs. Therefore, it su�ces to bound the probability that gi or gj
evaluate to 0 on a random point. By Lemma 1 (Schwartz Zippel) and Lemma 5,
we get an upper-bound of 4d

`

2` pn` |ct|qqsk|sk|
˘

{p.
Now, we consider event (2). If Leq

s ris “ Leq
s rjs ‰ K, event (2) corresponds

to the case when fi ¨ gj ´ fj ¨ gi ‰ 0, and pfi ¨ gj ´ fj ¨ giqpxq “ 0, for a
random point x. By Schwartz-Zippel (Lemma 1) and Lemma 5, we get an
upper-bound of 4d

`

2` pn` |ct|qqsk|sk|
˘

{p. Finally, using the same argument as
for event (1), we can bound the probability that Leq

s ri
1s “ Leq

s rj
1s “ K by

4d
`

2` pn` |ct|qqsk|sk|
˘

{p.
Summing up all three upper-bounds, we obtain the lemma. l
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Lemma 7. ASM
ABE,Apλq “ 0.

Proof of Lemma 7. We show that the view of any adversary A, playing the
experiment ExpSMABEp1

λ,Aq, is independent of β.
The only information that might be leadked about α can be due to the

output of O„
cmp on queries of the form pt, pi, jqq, for some pi, jq P N2. We know

that Ltris and Ltrjs are linear combinations of rational fractions in pLt, where
pLt is de�ned as in Lemma 5. Namely, we write:

Ltris “
rf
ÿ

`Pr|pLt|s

α
piq
` ¨ f`{g` and Ltrjs “

rf
ÿ

`Pr|pLt|s

α
pjq
` ¨ f`{g`

for αpiq1 , α
pjq
1 , . . . , α

piq

|pLt|
, α
pjq

|pLt|
P Zp, where for all ` P r|pLt|s, pLtr`s :“ f`{g`. Now, let

`‹ P N˚ be such that f`‹{g`‹ “ κ‹β.

If αpiq`‹ “ α
pjq
`‹ , then Ltris „rf Ltrjs ô

řrf
`‰`‹ α

piq
` ¨ f`{g` „rf

řrf
`‰`‹ α

pjq
` ¨ f`{g`,

which is independent of β.
If αpiq`‹ ‰ α

pjq
`‹ , then

Ltris „rf Ltrjs ñ κ‹β „rf

rf
ÿ

`‰`‹

α
pjq
` ´α

piq
`

α
piq
`‹
´α

pjq
`‹

¨ f`{g`

and thus, there exist x P X , tE˚yuyPQsk
and γ P Zp such that for cÐ sEpxq and

ky Ð rEpyq,
ř

yPQsk
pB, cpS,BqqJE˚ykypRy,B, Aq ` γA „rf κ

‹
β . When β “ 0, κ‹0 “

AS0, which, together with Lemma 4, contradicts the symbolic security of ABE.
On the other hand, when β “ 1, κ‹1 “ U , which cannot be a linear combination
of rational fractions on a disjoint set of formal variables. We conclude that
Ltris rf Ltrjs, regardless of β. l

Summing everything up and applying the union bound on the bound given
by the hybrid step (Lemma 6), we obtain,

AGGM
ABE,Apλq ď

12d
`

2` pn` |ct|qqsk|sk|
˘

p
qcmp .

We conclude the proof of Theorem 17 using the fact that

qcmp ď
p|Leq

1 | ` |L
eq
2 | ` |L

eq
t |q

2

2
ď
p2` n` |ct| ` qsk |sk| ` qadd ` qpairq

2

2
.

Note that without loss of generality we have assumed that no comparison is
performed twice, and thus, the number of performed comparisons is bounded
by the number of pairs of di�erent elements. l
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5.3 Pair Encodings

In this section, we recall the de�nition of pair encodings, which have been origi-
nally introduced in [24, 190] as a useful abstraction to build ABE whose security
proof rely on the Dual System Encryption techniques [188] (roughly speaking,
a pair encoding is a private-key, one-time secure variant of ABE). We show in
Theorem 18 that any pair encoding that is symbolically secure, as de�ned in
[11] (this is the weakest possible notion of security for pair encoding), yields
a symbolically secure RFI-ABE via the construction presented in Figure 5.2.
The RFI-ABE obtained are roughly twice more e�cient that those obtained via
previous dual system frameworks, albeit relying on the Generic Group Model.

For convenience, we adopt the last de�nition of pair encodings given by
Agrawal and Chase in [11]. Note that it di�ers from the original de�nition
by Attrapadung [24] (recalled in Section 4.2.3) since the polynomials are as-
sumed to be of a more restrictive form. However, Agrawal and Chase argue [11,
Appendix A] that their restricted formulation of pair encodings does not lose
generality, by providing a transformation from the previous formulation to the
more restricted one, that does not a�ect the security of the resulting Predicate
Encryption scheme.

Pair encodings.

Let p be a prime, n P N. A pp, nq-pair-encoding for predicate P : X ˆY Ñ t0, 1u
consists of the following deterministic poly-time algorithms (polynomials are
considered over Zp):

‚ sEpxq Ñ cpS, pS,Bq. On input x P X , the sender encoding algorithm,
sE, outputs a vector of polynomials, c, in the non-lone variables S “

pS0, . . . , Swq, the lone variables pS “ ppS1, . . . , pS pwq, and the common vari-
ables B “ pB1, . . . , Bnq, where we require every polynomial be a linear
combination of the monomials tpSi, SjBk | i P r pws, j P r0, ws, k P rnsu.

‚ rEpyq Ñ kpR, pR,B, Aq. On input y P Y , the receiver encoding algo-
rithm, rE, outputs a vector of polynomials, k, in the non-lone variables
R “ pR1, . . . , Rmq, the lone variables pR “ p pR1, . . . , pR pmq, A, and the com-
mon variables B, where every polynomial be a linear combination of the
monomials tA, pRi, RjBk | i P rpms, j P rms, k P rnsu.

‚ Pairpx, yq Ñ E, pE. On input x P X , y P Y , the Pair algorithm outputs
matrices E P Zpw`1qˆ|k|

p , and pE P Z|c|ˆmp .
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Correctness.

A pair encoding is correct if for all x P X , y P Y such that Ppx, yq “ 1, it holds
SJEk ` cJER “ AS0, where cÐ sEpxq, k Ð rEpyq, pE, pEq Ð Pairpx, yq.

Symbolic security [11].

A pair encoding is symbolically secure if for all x P X and y P Y such that
Ppx, yq “ 0, there is no matrixE˚ P Zp1`w`|c|qˆpm`|k|qp such that pS, cqJE˚pR,kq “
AS0, where cÐ sEpxq, k Ð rEpyq and S “ pS0, . . . , Swq and R “ pR1, . . . , Rmq

are the variables appearing in polynomials cpS, pS,Bq and kpR, pR,B, Aq.
Our next theorem shows that any symbolically secure pp, nq-pair-encoding

psE, rE,Pairq [11] yields a symbolically secure pp, n, sE, rE,Pairq-RFI-ABE.

Theorem 18. [Symbolically secure pair encoding ñ symbolically secure RFI-ABE]
Let psE, rE,Pairq be a pp, nq-pair-encoding for predicate P : X ˆ Y Ñ t0, 1u.
The construction described in Figure 5.2 is a symbolically secure, pp, n, sE, rE,
Pairq-RFI-ABE.

Proof. We prove the symbolic security of the ABE by contradiction. Suppose
there is x P X , and matrices tE˚yuyPYx such that

ÿ

yPYx

`

S, cpS, pS,Bq
˘J

E˚y
`

Ry,kypRy, pRy,B, Aq
˘

“ AS0,

where c Ð sEpxq, Yx Ď Y is the set of all y P Y such that Ppx, yq “ 0, and for
all y P Yx, Ry :“ pRy,1, . . . , Ry,mq, pRy :“ p pRy,1, . . . , pRy, pmq, ky “ rEpyq.

First, notice that the matrices tE˚yuyPYx that result from removing the 2nd
to the pw`1q-th rows of tE˚yuyPYx satisfy,

ÿ

yPYx

`

S0, cpS, pS,Bq
˘J

E˚y
`

Ry,kypRy, pRy,B, Aq
˘

“ AS0 . (5.1)

That is because those rows would contribute to the whole summation with
monomials that result from the combination of variables pS1, . . . , Swq with
pRy,kyq, i.e., monomials of the form SiRy,j, SiA, Si pRy,pj, SiRy,j, Bk for i P rws,

j P rms, pj P rpms, k P rns and y P Yx. Note that these monomials do not appear
anywhere else and therefore their contribution can be ignored.

Now, for all y P Yx, we evaluate the polynomials from (5.1) in R
ry “ 0m and

pR
ry “ 0

pm, for all ry P Yxztyu, and A “ 0. We obtain,

`

S0, cpS, pS,Bq
˘J

E˚y
`

Ry,kypRy, pRy,B, 0q
˘

“ 0 . (5.2)
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Now, we show that there exists y‹ P Yx and a constant ρ P Z˚p such that
pS0, cpS, pS,Bqq

JρE˚y‹p0m,ky‹p0m,0 pm,0n, Aqq “ AS0, which, together with (5.2),
implies5 pS0, cpS, pS,Bqq

JρE˚y‹pRy‹ ,ky‹pRy‹ , pRy‹ ,B, Aqq “ AS0, thereby contra-
dicting the symbolic security of psE, rE,Pairq.

We do so in two steps, where in Step 1 (Lemma 8), we show that for all
y P Yx, we can assume some structural properties of the matrix E˚y . In step 2,
we show how these structural properties combined with (5.1) and (5.2) allow us
to derive the desired y‹ P Yx.

Lemma 8 (Step 1). For all x P X , y P Yx and let e
p1q
y P Zmp , e

p2q
y P Z|k|p ,

E
p3q
y P Z|c|ˆmp , E

p4q
y P Z|c|ˆ|k|p satisfying (5.2), when setting

E˚y :“

˜

e
p1qJ
y e

p2qJ
y

E
p3q
y E

p4q
y

¸

then, it also holds for e
p1q
y “ 0m and E

p4q
y “ 0|c|,|k|.

Proof of Lemma 8. We �rst show that cpS0, pS,Bq
JE

p4q
y kypRy, pRy,B, 0q “ 0. Ob-

serve, by de�nition of a pair encoding (see Section 5.3), that the polynomial
cpS0, pS,Bq

JE
p4q
y kypRy, pRy,B, 0q is a linear combination of monomials of the

form:
pS
pi
pRy,pj,

pS
piBkRy,j, S0Bk

pRy,pj, or S0BkBk1Rj (5.3)

for pi P r pws, j P rms, pj P rpms, k, k1 P rns.
Now note that, by (5.2) we have

cpS0, pS,Bq
JEp4qy kypRy, pRy,B, 0q “

´ S0e
p1qJ
y Ry ´ S0e

p2qJ
y kypRy, pRy,B, 0q ´ cpS, pS,BqJEp3qy Ry .

On the right-hand side of the previous equation, none of the monomials from
(5.3) appear, therefore, both, the left-hand side and the right-hand side of the
previous equation, must be zero.

Finally, by evaluating (5.2) on pS “ 0
pw, pRy “ 0

pm, B “ 0n, we obtain
S0e

p1qJ
y Ry “ 0. l

Step 2. Substracting equation (5.2) from (5.1) for every y P Yx, we obtain,
ÿ

yPYx

`

S0, cpS, pS,Bq
˘J

E˚y
`

0m,kyp0m,0 pm,0n, Aq
˘

“ AS0 .

5That is due to linearity and the fact that variable A never appears multiplied by other
variables in the polynomials in ky.
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Now, evaluating the above equation on Bi “ 0 and pSj “ 0 for all i P rns and
j P r pws, we obtain,

ÿ

yPYx

S0e
p2qJ
y kyp0m,0 pm,0n, Aq “ AS0 .

But kyp0m,0 pm,0n, Aq are vectors of polynomials linear in A, therefore we
have

ř

yPYx e
p2qJ
y kyp0m,0

pm,0n, 1q “ 1. And in particular, there exists y‹ P Yx
such that e

p2qJ
y‹ ky‹p0m,0

pm,0n, 1q “ µ ‰ 0.
Consequently, the matrix

rE :“ 1{µ

˜

0Jm e
p2qJ

y‹

E
p3q
y‹ 0|c|,|k|

¸

is such that
`

S, cpS,S1,Bq
˘J

rE
`

0,ky‹p0,0,0, Aq
˘

“ AS0. Finally, combining
this fact with Lemma 8 leads to a contradiction of the symbolic security of
psE, rE,Pairq. l

Together with Theorem 17, Theorem 18 shows that any pair encoding gives
a secure RFI-ABE adaptively secure in the Generic Group Model.

5.4 Concrete RFI-ABE

Focusing on the Generic Group Model allowed us to build schemes that are often
simpler and more e�cient compared to existing schemes from the literature (see
table in Figure 5.1 for a comparison between the most e�cient ABE). In this
section, we show a selection of schemes that illustrate the versatility of our
framework. Our contribution here is threefold:

i) We design new pair encodings, which give new, more e�cient RFI-ABE via
our framework (Figure 5.2). This is the case of IPE 2, compact KP-ABE,
unbounded KP-ABE, CP-ABE, and unbounded CP-ABE.

ii) We use our framework on existing pair encodings, to obtain new, more
e�cient RFI-ABE, albeit relying on a stronger assumption. This is the
case of IBE 1 and IPE 1, whose underlying pair encoding are implicit in
the work of [191] and [138] respectively.

iii) We use our framework on existing pair encodings, to prove new security
guarantee s on existing RFI-ABE. This is the case of IBE 2 from [62]
and KP-ABE from [116]. Here, our framework, when input on the pair
encodings implicitly given in [62, 116], outputs exactly the same RFI-ABE
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5.4. Concrete RFI-ABE

present in those papers: there is no e�ciency gain. However, we can prove
these RFI-ABE adaptively secure, under GGM, while they were proved
only selectively secure, based on standard assumptions.

Overall, our new framework captures previous schemes (contribution iii),
and improves upon many others (contributions i and ii), at the price of consi-
dering generic security.

KP-ABE |mpk| |sk| |ct| timeDec security

GPSW06 [116] U ` |Γ| |Γ|P``E (DBDH, selective)
(GGM, adaptive)

RW13 [171] 3 3` 2|Γ|`1 p2|Γ|`1qP`3`E (q-type, selective)
Our uKP-ABE 2 2` 2|Γ| 2|Γ|P`2`E (GGM, adaptive)

ALP11 [29] γ pγ`1q` 2 2P`|Γ|`E (q-type, selective)
Our cKP-ABE U `U 2 2P`|Γ|`E (GGM, adaptive)

CP-ABE |mpk| |sk| |ct| timeDec security

W11 [189] U`1 |Γ|`2 2``1 p|Γ|`2qP`2`E (q-type, selective)
Our CP-ABE U |Γ|`1 ``1 p|Γ|`1qP``E (GGM, adaptive)

RW13 [171] 4 2|Γ|`2 3``1 p2|Γ|`2qP`3`E (q-type, selective)
Our uCP-ABE 4 |Γ|`2 3` p|Γ|`2qP`3`E (GGM, adaptive)

Table 5.1: Comparison of the most e�cient existing KP-ABE and CP-ABE
schemes for (monotone) boolean span programs, based on prime-order bilinear
groups. We denote by |Γ| the attribute set size, γ the maximum size for Γ
(if bounded), U the size of the attribute universe (if bounded small-universe),
` is the size of the access structure. For |ct|, we omit the additive overhead
of Op|Γ|q bits for transmitting the attribute vector (in KP-ABE), or Op`q bits
for transmitting the access structure. We use timeDec to denote the decryption
time. Numbers in |mpk|, |sk| and ct columns correspond to the number of
group elements from source groups. All mpk and all ct have an additional
group element in Gt. We write E to express exponentiation time in source
groups and we use P to denote the time of one pairing operation. Decryption
algorithms have been optimized taking into account that P ą E. We use pink
to indicate new results.

5.4.1 Identity-Based Encryption (IBE)

We refer to Section 2.1.4 for more details about Identity-Based Encryption. We
have X “ Y “ Zp, and the predicate P is de�ned as: Ppx, yq “ 1 i� x “ y.
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5.4.1 IBE 1 [191]

This is the prime-order version of the IBE from [191], which uses the Déjà Q
framework, introduced in [73].

B :“ B, S :“ S0, R :“ H pn “ 1, w “ 0,m “ 0q

sEpxq :“ S0pB ` xq rEpyq :“ A{pB ` yq Pairpx, yq :“ 1

It is an open problem to translate this framework, which uses composite-
order bilinear groups, to the more e�cient [122] prime order setting. This
yields one of the most e�cient IBE, as illustrated in the benchmark Figure 5.7.
Note that an unpublished manuscript from Eike Kiltz and Gregory Neven, cited
in [67, citation 25], already proves adaptive security of IBE 1 in the GGM.

Proof of symbolic security. Suppose there exist x P Zp, and tey P ZpuyPYx
such that

rf
ÿ

yPYx

S0pB ` xqeyA{pB ` yq „rf AS0 .

For all y P Yx, y ‰ x, we evaluate the above rational fraction on B “ ´x to
obtain 0 „rf AS0, which is a contradiction.

More formally, this corresponds to the application of rules com-den, div-split,
eval-var on B “ ´x, and zero-prod, as explained in the example of Section 5.5.
l

5.4.1 IBE 2 [62]

This is the Identity-Based Encryption scheme presented in [62], which we prove
adaptively secure in the GGM ([62] proved it selectively secure based on DBDH).

B :“ pB1, B2q, S :“ S0, R :“ R pn “ 2, w “ 0,m “ 1q

sEpxq :“ pS0, S0pB1 ` xB2qq rEpyq :“ pR,A`RpB1 ` yB2qq

Pairpx, yq :“

ˆ

0 1
´1 0

˙
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5.4. Concrete RFI-ABE

Proof of symbolic security. The underlying pair encoding of IBE 2 falls
under the de�nition of [11]. Thus, by Theorem 18 we only have to show that
the pair encoding is symbolically secure, as de�ned Agrawal and Chase in [11]
(see Section 5.3 for more details).

We prove it by contradiction, and using the Lemma 8 (additional structure
on the bilinear map): suppose there exist x, y P Zp with x ‰ y, and e1, e2 P Zp
such that:

e1S0 pA`RpB1 ` yB2qq ` e2S0pB1 ` xB2qR “ AS0 .

Evaluating the polynomials on B2 “ u and B1 “ ´xu, for an arbitrary u P Z˚p ,
we obtain: e1S0pA`upy´xqRq “ AS0. Then, using the rule extr-coe� on S0R,
we obtain py ´ xq “ 0, which contradicts x ‰ y. l

5.4.2 Inner-Product Encryption (IPE)

Inner-Product Encryption (IPE) generalizes IBE, and captures useful classes of
predicates, such as CNF and DNF formulas, or predicates that can expressed
as polynomials (see [138] for more details).

For IPE, we have X “ Y “ Z`p and for any z P Z˚p , the predicate Pz is
de�ned as: Pzpx,yq “ 1 i� xJy “ z.

5.4.2 IPE 1 [138]

IPE 1 is a prime-order version of [138].

B :“ pU,V q, S :“ S0, R :“ R pn “ 1``, w “ 0,m “ 1q

sEpxq :“ pS0, S0pUx` V qq rEpyq :“ pR,A`RpUz ` V Jyqq

Pairpx,yq :“

ˆ

0 1
´y 0`

˙

Via our framework described in Figure 5.2, gives an IPE that is twice shorter
than the already existing prime-order version of [138], namely [164]. This is ex-
pected because we prove generic security, while the cited works prove security
in the standard model.

Proof of symbolic security. The underlying pair encoding of IPE 1 falls under
the de�nition of [11]. Thus, by Theorem 18, we only have to show that the pair
encoding is symbolically secure (see in Section 5.3). We prove it by contradiction
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and using the Lemma 8: suppose there exist x,y P Z`p with xJy ‰ z, e1 P Zp
and e2 P Z`p such that:

e1S0

`

A`RpUz ` V Jyq
˘

` S0pUx` V qJe2R “ AS0 .

Evaluating the polynomials on U “ u and V “ ´xu, for an arbitrary u P Z˚p ,
we obtain e1S0pA` upz ` xJyqRq “ AS0. Now, using the rule extr-coe� on R,
we obtain pz ` xJyq “ 0, which contradicts pz ` xJyq ‰ 0. l

5.4.2 IPE 2

IPE 2 is a new and shorter Inner-Product Encryption that relies on inversions
in the exponent, which were not captured by previous frameworks.

B :“ B, S :“ S0, R :“ H pn “ `, w “ 0,m “ 0q

sEpxq :“ S0px`Bq rEpyq :“ A{pz `BJyq Pairpx,yq :“ y

Proof of symbolic security. By contradiction, suppose there exist x P Z`p,
and tey P Z`puyPYx such that

rf
ÿ

yPYx

S0px`BqJeyA{pz `BJyq „rf AS0 .

Since for all y P Yx, xJy ‰ z, we can evaluate the above rational fraction on
B “ ´x, to obtain: 0 „rf AS0, which is a contradiction. As for the proof of
symbolic security of IBE 1 above, this can be handle by our automatic tool,
using the rules com-den, div-split, eval-var on B “ ´x, and zero-prod. l

5.4.3 ABE for boolean span programs.

As in Chapter 4 (Section 4.6.2), we de�ne (monotone) access structures using
the language of (monotone) span programs [137]. They generalize IBE and IPE,
by allowing to embed more complex access policies in ciphertexts or in keys.
We refer to De�nition 13 from Chapter 2 for the notation and details about
monotonic access structures.
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Large universe, Unbounded ABE. When U is of polynomial size, we write
U :“ rγs, and we describe sets Γ Ď rγs by their characteristic vectors x P t0, 1uγ,
where for all i P rγs, xi “ 1 if i P Γ, and 0 otherwise. If an ABE supports
universes U of exponential size, we call it large universe. If additionally, it
does not introduce a bound on the number of attributes per ciphertext, we
use the term unbounded ABE. For practical purposes, unbounded ABE [147]
are preferable, because the setup does not introduce a bound on the number
of attributes per ciphertext, and they allow for more versatility since any bit
string (once hashed into Zp) can be used as an attribute.

5.4.3 KP-ABE [116]

Considering security in the Generic Group Model, we prove the adaptive security
of the KP-ABE from [116], arguably one of the most e�cient KP-ABE, while
[116] proved its selective security based on the DBDH assumption.

Here, U :“ rγs, X :“ t0, 1uγ, Y :“ Z`ˆr`
p ˆ pr`s Ñ rγsq.

B :“ B, S :“ S0, R :“ pR1, . . . , Rr`´1q pn “ γ, w “ 0,m “ r`´1q

sEpxq :“ px1S0B1, . . . , xγS0Bγq

rEppM, ρqq :“
`

MJ
1 pA,Rq{Bρp1q, . . . ,M

J
` pA,Rq{Bρp`q

˘

Pairpx, pM, ρqq :“ E P Zγˆ`p , where for all i P rγs, j P r`s, it holds

Ei,j “ wj if ρpjq “ i and 0 otherwise.

Here, coe�cients wj (for j P r`s) correspond to the weights from De�nition 13
(Chapter 2).

From this point, we use a generalized extr-coe� rule for the proof of symbolic
security of our encodings. More precisely, for polynomials P1, P2, P3, such that
P2 ‰ 0, and P3 R Izt0u where I is the ideal generated by P2, we have,

P1P2 ` P3 “ 0 implies P1 “ 0 ^ P3 “ 0 .

Proof of symbolic security. By contradiction, suppose there exist x P t0, 1uγ,
and tEpM,ρq P Zγˆ`p upM,ρqPYx such that

ÿ

:“
rf
ÿ

pM,ρqPYx

sEpxqJEpM,ρqrEppM, ρqqpRÑ RpM,ρqq „rf AS0 .

We write
ř

“
ř

1`rf

ř

2, where
ř

1 P xΥ1y and
ř

2 P xΥ1y, with:
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‚ Υ1 :“
 

xρpjqS0M
J
j pA,RpM,ρqq : pM, ρq P Yx, j P r`s

(

‚ Υ2 :“
 

xiS0M
J
j pA,RpM,ρqqBi{Bρpjq : pM, ρq P Yx, j P r`s, i P rγs, ρpjq ‰ i

(

Also, let V :“ tρpjq : pM, ρq P Yx, j P r`s, i P rγs, ρpjq ‰ iu. We use the
rules com-den, div-split and extr-coe� on the monomial

ś

kPV Bk in the equation
ř

1`rf
ř

2 „rf AS0, to obtain
ř

1 „rf AS0.
Now, we write

ÿ

1

:“
ÿ

pM,ρqPYx

jPr`s

δpM,ρq,jxρpjqS0M
J
j pA,RpM,ρqq

and for all pM, ρq P Yx, we evaluate the equation
ř

1 „rf AS0 on A “ 0, S0 “ 1,
and R

pĂM,rρq “ 0
r`´1 for all pĂM, rρq P YxztpM, ρqu, to obtain,

@pM, ρq P Yx :
ÿ

jPr`s

δpM,ρq,jxρpjqM
J
j p0,RpM,ρqq „rf 0 . (5.4)

Also, we evaluate the equation
ř

1 „rf AS0 on A “ 1, S0 “ 1, and RpM,ρq “ 0
r`´1

for all pM, ρq P Yxand using the rule non-zero-sum, there exists pM‹, ρ‹q P Yx

such that
ÿ

jPr`s

δpM‹,ρ‹q,jxρ‹pjqM
‹J
j p1,0r`´1q “ µ ‰ 0 (5.5)

Now, combining Equation (5.4) and (5.5) and using the rule extr-coe� on each
variable of RpM‹,ρ‹q, we obtain

1

µ

ÿ

jPr`s

δpM‹,ρ‹q,jxρ‹pjqM
‹J
j “ 1

which contradicts Ppx, pM‹, ρ‹qq “ 0. l

5.4.3 Compact KP-ABE (cKP-ABE)

We now give a new compact KP-ABE, where the ciphertexts contain 2 group
elements, regardless of the number of attributes. This is more e�cient that
state-of-the-art [29] for which ciphertexts contain 3 group element (although
the latter is for large universe).

Here, U :“ rγs, X :“ t0, 1uγ, Y :“ Z`ˆr`
p ˆ pr`s Ñ rγsq.
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B :“ B, S :“ S0, R :“ R pn “ γ, w “ 0,m “ r`´1q

sEpxq :“ pS0

γ
ÿ

i“1

xiBi, S0q

rEppM, ρqq :“ pkj, ki,jqiPrγs,jPr`s,ρpjq‰i , where kj :“MJ
j pA,Rq{Bρpjq,

ki,j :“MJ
j pA,RqBi{Bρpjq

Pairpx, pM, ρqq :“ E P Z2ˆγ`
p , such that sEpxqJE rEppM, ρqq “

pS0

řγ
i“1 xiBiq ¨rf

´

řrf
jPr`s ωjkj

¯

`rf S0 ¨rf

´

řrf
jPr`s,iPrγs,i‰ρpjq xiωjki,j

¯

Proof of symbolic security. By contradiction, suppose there exist x P t0, 1uγ,
and tEpM,ρq P Z2ˆγ`

p upM,ρqPYx such that

ÿ

:“
rf
ÿ

pM,ρqPYx

sEpxqJEpM,ρqrEpM, ρqpRÑ RpM,ρqq „rf AS0 .

For j P r`s and pM, ρq P Yx we de�ne αj “ S0M
J
j pA,RpM,ρqq. We write

ř

“
ř

1`rf

ř

2`rf

ř

3, where for all k P r3s,
ř

k P xΥky, with:

‚ Υ1 :“
 

xρpjqS0M
J
j pA,RpM,ρqq : pM, ρq P Yx, j P r`s

(

‚ Υ2 :“
 

αj{Bρpjq, αjBi{Bρpjq, αjxiBiBi1{Bρpjq : i,i1Prγs, j Pr`s, ρpjqRti, i1u
(

‚ Υ3 :“
 

xρpjqS0BiM
J
j pA,RpM,ρqq : pM, ρq P Yx, i P rγs, j P r`s

(

Let V :“ tρpjq : pM, ρq P Yx, j P r`su. We use the rules com-den, div-split and
extr-coe� on the monomial

ś

kPV Bk to obtain
ř

1`rf
ř

3 „rf AS0, from which we
obtain

ř

3 „rf 0 by using the rule extr-coe� on the monomial Bi for all i P rγs,
in the equation

ř

1`rf
ř

3 „rf AS0. Therefore,
ř

1 „rf AS0. The rest of the proof
goes exactly as for the proof of the KP-ABE [116]. (See the previous encoding
for further details.) l

5.4.3 Unbounded KP-ABE (uKP-ABE)

Then, we give an unbounded KP-ABE that improves upon [171] (which is proved
selectively secure under a q-type assumption), and thereby gives the most e�-
cient unbounded KP-ABE to the best of our knowledge (see the table Figure 5.1
for a precise comparison).
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Here, U :“ Zp, X :“ tΓ Ď Zpu, Y :“ Z`ˆr`
p ˆ pr`s Ñ Zpq.

B :“ pB1, B2q, S :“ pS0, S̄iqiPΓ, R :“ R pn “ 2, w “ |Γ|,m “ r`´1q

sEpΓq :“
`

S̄ipB1 ` iB2q, S0 ´ S̄i
˘

iPΓ

rEppM, ρqq :“
`

MJ
j pA,Rq{pB1 ` ρpjqB2q, M

J
j pA,Rq

˘

jPr`s

PairpΓ, pM, ρqq :“

ˆ

E 0|Γ|,`
0|Γ|,` E

˙

P Z2|Γ|ˆ2`
p where for all i P Γ, j P r`s,

the element of the row associated to i in E, in position j

equals wj if i “ ρpjq and 0 otherwise.

Proof of symbolic security. By contradiction, suppose there exist Γ Ď Zp
and tEpM,ρq P Z2|Γ|ˆ2`

p upM,ρqPYΓ
such that

ÿ

:“
rf
ÿ

pM,ρqPYΓ

sEpΓqJEpM,ρqrEpM, ρqpRÑ RpM,ρqq „rf AS0 .

For j P r`s and pM, ρq P YΓ, we de�ne αj “ MJ
j pA,RpM,ρqq. Now, we write

ř

:“
ř

1`rf

ř

2`rf

ř

3, where for all k P r3s,
ř

k P xΥky, with:

‚ Υ1 :“
 

pS0 ´ S̄iqαj, S̄ρpjqαjq : pM, ρq P YΓ, j P r`s
(

‚ Υ2 :“
 

S̄ipB1 ` iB2qαj : pM, ρq P YΓ, i P Γ
(

‚ Υ3 :“
 

S̄ipB1 ` iB2qαj{pB1 ` ρpjqB2q : pM, ρqPYΓ, iPΓ, j Pr`s, ρpjq ‰ i
(

Y
 

pS0 ´ S̄iqαj{pB1 ` ρpjqB2q : pM, ρq P YΓ, i P Γ, j P r`s
(

We show that:

i)
ř

2 „rf 0: evaluating the equation
ř

„rf AS0 on B2 “ 0, then multiplying
it by B1, and using the rule extr-coe� on S̄iB2

1 for all i P Γ.

ii)
ř

1 „rf AS0: using the rule com-den on the equation
ř

1`rf

ř

3 „rf AS0,
then div-split, and applying the rules extr-coe� on the polynomial B1 `

ρpjqB2 sequentially for each value ρpjq such that pM, ρq P YΓ, and j P r`s.

Then, for certain coe�cients σpM,ρq, we can write
ř

1 :“
ř

1.1`
ř

1.2, where
ÿ

1.1

:“
ÿ

pM,ρqPYΓ

j:ρpjqPΓ

σpM,ρq,jS0αj
ÿ

1.2

:“
ÿ

pM,ρqPYΓ

iPΓ,jPr`s

σpM,ρq,j,ipS0 ´ S̄iqαj
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We have
ř

1.2 „rf 0 using extr-coe� on Si for all i P Γ.
Finally, we reach a contradiction from

ř

1.1 „rf AS exactly as in the proof
of symbolic security of the KP-ABE [116].

5.4.3 CP-ABE

This is a new adaptively secure CP-ABE where ciphertexts are half the size of
[189], while the latter was proven selective secure based on q-type assumptions.

Here, U :“ rγs, X :“ Z`ˆr`
p ˆ pr`s Ñ rγsq, Y :“ t0, 1uγ.

B :“ B, S :“ pS0,Uq, R :“ R pn “ γ, w “ r`´1,m “ 1q

sEppM, ρqq :“
´

`

MJ
i pS0,UqBρpiq

˘

iPr`s
, S0

¯

rEpyq :“
´

pyjR{BjqjPrγs , A´R
¯

PairppM, ρq,yq :“

ˆ

E 0`
0Jγ E

˙

P Zp``1qˆpγ`1q
p where for all i P r`s, j P rγs,

Ei,j “ wi if j “ ρpiq and 0 otherwise.

Proof of symbolic security. Suppose there exist pM, ρq P Z`ˆr`
p ˆ pr`s Ñ rγsq,

and tEy P Zp``1qˆpd`1q
p uyPYpM,ρq

such that

ÿ

:“
rf
ÿ

yPYpM,ρq

sEpM, ρqJEyrEpyqpRÑ Ryq „rf AS0

We write
ř

:“
ř

1`rf

ř

2`rf

ř

3, where for all k P r3s,
ř

k P xΥky, with:

‚ Υ1 :“
 

S0pA´Ryq, xρpiqRyM
J
i pS0,Uq : y P YpM,ρq, i P r`s

(

‚ Υ2 :“
 

xjS0Ry{Bj, xjRyBρpiqM
J
i pS0,Uq{Bj : yPYpM,ρq, j Prγs, iPr`s, ρpiq‰j

(

‚ Υ3 :“
 

pA´RyqBρpiqM
J
i pS0,Uq : i P r`s

(

We use the rules com-den, div-split and extr-coe� on the monomial
ś

kPrγsBk, to
obtain

ř

1`rf

ř

3 „rf AS0. Then, we obtain
ř

3 „rf 0 using the rule extr-coe�

on the monomial Bρpiq for all i P r`s, in the equation
ř

1`rf

ř

3 „rf AS0. Thus,
we get:

ř

1 „rf AS0. Then, we write
ÿ

1

:“
ÿ

yPYpM,ρq,iPr`s

σy,ixρpiqM
J
i pS0,UqRy ` σyS0pA´Ryq
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and for all y P YpM,ρq, we evaluate the equation
ř

1 „rf AS0 on A “ 0, S0 “ 1,
and R

ry “ 0 for all ry P YpM,ρqztyu, to obtain:

ÿ

iPr`s

`

σy,ixρpiqM
J
i pS0,UqRy

˘

´ σyRyS0 „rf 0 (5.6)

Now, suppose σy ‰ 0. By evaluating Equation (5.6) on Ry “ 1, we have

ÿ

iPr`s

σy,i
σy

xρpiqM
J
i pS0,Uq „rf S0 .

Then, using the rule extr-coe� on S0 and all the variables in U , we obtain:
ř

iPr`s
σy,i
σy
xρpiqM

J
i “ 1, which contradicts PppM, ρq,yq “ 0. Therefore, for all

y P YpM,ρq, we have σy “ 0. In particular,
ř

1 does not contain the formal
variable A, which contradicts

ř

1 „rf AS0 (the contradiction is obtained by
applying rule extr-coe� on A). l

5.4.3 Unbounded CP-ABE (uCP-ABE)

Finally, we give an new, adaptively secure, unbounded CP-ABE where secret
key size and decryption time are roughly half that state of the art [171], whose
selective security is based on q-type assumptions.

Here, U :“ Zp, X :“ Z`ˆr`
p ˆ pr`s Ñ Zpq, Y :“ tΓ Ď Zpu.

B :“ pB1, B2, V,W q, S :“ pS0,U , S̄iqiPr`s, R :“ R

pn “ 4, w “ r`´1` `,m “ 1q

sEppM, ρqq :“
`

S̄ipB1 ` ρpiqB2q, ´V S̄i `WMJ
i pS0,Uq, M

J
i pS0,Uq

˘

iPr`s

rEpΓq :“ pRV {pB1 ` jB2q, R, A´WRqjPΓ

PairppM, ρq,Γq :“

¨

˝

E 0` 0`
0`,|Γ| e 0`
0`,|Γ| 0` e

˛

‚P Z3`ˆp|Γ|`2q
p where for all i P r`s, j P rγs,

Ei,j “ wi if j “ ρpiq, 0 otherwise; and ei “ wi if ρpiq P Γ, 0 otherwise.

Proof of symbolic security. Suppose there exist pM, ρq P Z`ˆr`
p ˆ pr`s Ñ Zpq,

and tEΓ P Z3`ˆp|Γ|`2q
p uΓPYpM,ρq

such that

ÿ

:“
rf
ÿ

ΓPYpM,ρq

sEppM, ρqqJEΓrEpΓqpRÑ RΓq „rf AS0
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5.4. Concrete RFI-ABE

For i P r`s we de�ne αi “ MJ
i pS0,Uq and bj “ V {pB1 ` jB2q. We write

ř

:“
ř

1`rf

ř

2`rf

ř

3`rf

ř

4, where for all k P r4s,
ř

k P xΥky, with:
‚ Υ1 :“

 `

´V S̄i `Wαi
˘

RΓ, αipA´WRΓq : Γ P YpM,ρq, i P r`s
(

Y
 

S̄iRΓV : Γ P YpM,ρq, i P r`s, ρpiq P Γ
(

‚ Υ2 :“
 

´V S̄i `WαipA´WRΓq, αiRΓ : Γ P YpM,ρq, i P r`s
(

‚ Υ3 :“
 

S̄ipB1 ` ρpiqB2qRΓ, S̄ipB1 ` ρpiqB2qpA´WRΓq : Γ P YpM,ρq, i P r`s
(

‚ Υ4 :“
 

S̄ipB1 ` ρpiqB2qRΓbj : Γ P YpM,ρq, i P r`s, j P Γ, ρpiq ‰ j
(

Y
 `

´V S̄i `Wαi
˘

RΓbj , αiRΓbj : Γ P YpM,ρq, i P r`s, j P Γ
(

We show that:

‚

ř

3 „rf 0: evaluating the equation
ř

„rf AS0 on B2 “ 0, then multiplying
it by B1, and using the rule extr-coe� on S̄iB2

1 .

‚

ř

1`rf

ř

2 „rf AS0: using the rule com-den on the equation
ř

1`rf

ř

2`rf
ř

4 „rf AS0, then div-split, and applying the rules extr-coe� on the poly-
nomial B1 ` jB2 sequentially for each value j P Γ.

‚

ř

2 „rf AS0: �rst, we use the rule extr-coe� onWA andW 2 in the equation
ř

1`rf

ř

2 „rf 0. Then, we evaluate the equation
ř

1`rf

ř

2 „rf AS0 on
W “ 0, V “ 0, A “ 0, and use the rule extr-coe� on RΓ for all Γ P YpM,ρq.
Finally, we evaluate the equation

ř

1`rf

ř

2 „rf AS0, on RΓ “ 0 for all
Γ P YpM,ρq and A “ 0, and we use the rule extr-coe� on V S̄i for all i P r`s.

Summing up, we get:
ř

1 „rf 0. We write
ř

1 :“
ř

1.1`rf

ř

1.2`rf

ř

1.3,
where

ÿ

1.1

:“
ÿ

ΓPYpM,ρq

i:ρpiqPΓ

νΓ
i AM

J
i pS0,Uq

ÿ

1.2

:“
ÿ

ΓPYpM,ρq

iPr`s

`

V S̄i `WMJ
i pS0,Uq

˘ `

σΓ
i RΓ ` δ

Γ
i pA´WRΓq

˘

ÿ

1.3

:“
ÿ

ΓPYpM,ρq

iPr`s

MJ
i pS0,U q

`

ηΓ
i RΓ ` µ

Γ
i pA´WRΓq

˘

for certain νΓ
i , σ

Γ
i , δ

Γ
i , η

Γ
i , µ

Γ
i , i P r`s. We have, for all Γ P YpM,ρq, i P r`s,

σΓ
i “ 0 (by using extr-coe� on V S̄iRΓ) and δΓ

i “ 0 (by using extr-coe� on
AV S̄i). Therefore,

ř

1.2 „rf 0. Next, note that for all Γ P YpM,ρq, i P r`s,
ř

Γ,i η
Γ
i M

J
i “ 0J (by using extr-coe� on RΓS0 and RΓU) and

ř

Γ,i µ
Γ
i M

J
i “ 0J

(by using extr-coe� on WRΓS0 and WRΓU ). That implies
ř

1.3 „rf 0. Finally,
we have:

ř

1.1 „rf AS0, which leads to a contradiction, as argued in the symbolic
security proof of the CP-ABE. l
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5. Attribute-Based Encryption in the Generic Group Model

5.5 Automated proofs

Our main result entails that symbolic security implies security in the GGM
for every RFI-ABE. Conversely, an attack against symbolic security usually
represents a generic attack.6 In this section, we present a constraint-solving
method for (dis)proving symbolic security of RFI-ABE. Our method proceeds
in two steps: we encode symbolic security as a constraint (written in a fragment
of �rst-order logic); then we use proof rules for proving its (non-)validity. In
this section, we present the syntax of constraints and give some proof rules.
Then, we show how our method can be used to obtain a proof of symbolic
security of the IBE 1 example, and to �nd a subtle attack. Finally, we present
an implementation of the tool, and summarize some experimental results.

Broadly speaking, our algorithms combine simpli�cation rules, which turn
systems into simpler ones and case distinctions, which transform one single
system into a system of equations, adding to each new system new equations
that can trigger further simpli�cations.

Technically, the main di�culty is to reason about equations and inequations
that combine rational fractions and big operators, i.e. expressions of the form
ř

iPQ ei or small
ś

iPQ ei, where Q is a set of arbitrary size (informally, cor-
responding to adversary queries). Because neither symbolic computation nor
algorithmic veri�cation tools can deal with big operators (the former do not
support big operators and the latter operate on a bounded state space), we
develop deductive methods for solving systems of equations.

Constraints. We use a rich language of constraints that can express the ex-
istence of solutions of systems of equations and inequations between rational
expressions. In order to accommodate case analysis, the language also features
disjunction at top level. Thus constraints are of the form

Dx1. C1 _ . . ._ Dxk. Ck

where each C is a �nite conjunction of (in-)equations. Due to the presence of
big operators, (in-)equations may be universally quanti�ed over arbitrary sets
Q. Therefore, and without loss of generality, each C is a �nite conjunction of
atoms of the following form:

‚ equation: E “ 0 ‚ inequation: E ‰ 0

‚ universal equation: @ k P K. E “ 0 ‚ universal inequation: @ k P K. E ‰ 0

6An attack against symbolic security could potentially require an exponential number of
keys, and in that case, it would not correspond to an e�cient attack on the scheme.
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5.5. Automated proofs

com-den
ÿ

iPK

Ei{E 1i  
ř

iPK Eiˆ
ś

jPKztiu E 1j
ś

iPK E 1i

mul-split E ˚ E 1 “ 0  E “ 0 _ E 1 “ 0

div-split E{E 1 “ 0  E “ 0 ^ E 1 ‰ 0

eval-var E “ 0  E “ 0 ^ Erv ÞÑ E 1s “ 0 for variable v
and a closed (variable-free) expression E 1

extr-coe� E ˚ v ` E 1 “ 0  E “ 0 ^ E 1 “ 0 where v
is a variable and E , E 1 do not contain v

zero-prod
ź

iPK

Ei “ 0  Dj P K : Ej “ 0

non-zero-sum
ÿ

iPK

Ei ‰ 0  Dj P K : Ej ‰ 0

idx-split Di P K.Si  pDi P Kztju.Siq _ Sj

Table 5.2: Selected constraint-solving rules.

where E ranges over expressions. The syntax of expressions is presented in Fig-
ure 5.6. Expressions E must be well-typed, which we enforce by declaring a type
for each variable, and imposing a simple typing discipline on expressions. For
example, matrices appearing in our equations are typed with a dimension and
we require that these dimensions are consistent for matrix addition and multi-
plication. Additionally, operators like ˝ (pair-wise product) and diag (diagonal
matrix) are enforced to be applied to vectors only (matrices with dimension
nˆ 1 or 1ˆ n).

Constraint-solving system. The constraint-solving system consists of two
parts: proof rules and proof search.

Proof rules are of the form D  D1. Rules can either be simpli�cation rules
or case distinction rules. Simpli�cation rules turn systems into simpler ones.
The rules are sound in the sense that they preserve solutions, i.e., if the new
system contains a contradictory equation like 1 “ 0 or 0 ‰ 0, it is guaranteed
that the original system is unsatis�able. Case distinctions transform one single
system into several systems of equations. Soundness is guaranteed because these
transformations are such that if the original system has a solution, at least one
of the derived new systems will have a solution. In turn, the new equations can
trigger further simpli�cations. Table 5.2 contains some key rules: com-den can
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sets Q[q].

params forall i in Q: x, y_i, a_i in Zp.

vars S0, B, A in Zp.

forall i in Q: x <> y_i

/\ sum(i in Q: S0*(B+x)*a_i*A/(B+y_i)) = A*S0.

sets Q “ rqs.

params x˚, yi, ai P Zp @i P Q.
vars S0, B,A P Zp.

@i P Q : yi ‰ x˚

^
ÿ

iPQ
ai
S0pB ` x

˚qA

B ` yi
“ AS0

Figure 5.5: Input �le for the symbolic security of IBE 1 and interpretation.

be used to push the division operation outermost, by multiplying and dividing
by the common denominator of the summation terms; eval-var exploits the fact
that if a polynomial equation is zero, it has to be zero for every evaluation of
its variables; eval-coe� uses similar ideas than the previous rule, but is applied
to expressions that do not include divisions; zero-prod is semantically sound
because Zp is an integral domain; �nally div-split, mul-split and idx-split (the
last two are examples of case-distinction rules) allow to split the system into
more restricted cases.

Proof search is a series of heuristics that repeatedly select and apply rules
until it is shown that the system has no solution (or on the contrary is solvable).
Since all rules are sound, the proof search algorithm is sound.

Example. We illustrate our constraints solving methodology with an exam-
ple. Consider the system of equations in Figure 5.5, that corresponds to the
symbolic security of the IBE 1 from Section 5.4.1. A solution to such a system
consists of concrete values for q P N and the parameters x˚, yi, ai P Zp for ev-
ery i P rqs such that all the equations hold simultaneously treating S0, B,A as
formal variables (note that equality must be treated as the equivalence relation
„rf de�ned in Section 5.2).

The �rst step consists of getting rid of divisions. To do so, we apply rules
com-div and div-split in this case. These rules, combined with other standard
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simpli�cation rules will transform the system into:

@i P Q : yi ´ x
˚
‰ 0 (5.7)

^
ź

iPQ
pB ` yiq “

ÿ

iPQ

`

ź

jPQztiu

B ` yj
˘

aipB ` x
˚
q (5.8)

^ @i P Q : B ` yi ‰ 0 (5.9)

Now, the application of the rule eval-var to equation (5.8) with variable B and
E 1 “ ´x˚ will add the equation

ś

iPQp´x
˚ ` yiq “ 0 to the system, which can

be further simpli�ed by zero-prod. The system becomes:

Dk P Q :

@i P Q : yi ´ x
˚
‰ 0

^
ź

iPQ
pB ` yiq “

ÿ

iPQ

`

ź

jPQztiu

B ` yj
˘

aipB ` x
˚
q

^ @i P Q : B ` yi ‰ 0

^ ´ x˚ ` yk “ 0

which will be reduced to a contradiction after applying standard simpli�cation
rules, because the �rst and the fourth equations are contradictory.

Finding Attacks. Our tool can be used to �nd attacks for primitives that
look secure. We present an attack (found by our tool) for the following candi-
date Unbounded KP-ABE4 (U :“ Zp, X :“ tΓ Ď Zpu, Y :“ Z`ˆr`

p ˆpr`s Ñ Zpq):

B :“ B, S :“ pS0, S̄iqiPΓ, R :“ R pn “ 1, w “ |Γ|,m “ r`´1q

sEpΓq :“
`

S̄ipB ` iq, : S0 ´ S̄i
˘

iPΓ

rEppE, ρqq :“
`

MJ
j pA,Rq{pB ` ρpjqq, M

J
j pA,Rq

˘

jPr`s

The attack works as follows: �rst, the challenger samples a, bÐ$ Zp and
makes JbK1 , JaKt public. The adversary queries a secret key for policy M “

p1, 0, . . . , 0q, ρp1q “ 3 which is satis�ed i� the set of attributes contains attribute
3. The adversary will be given sk “ psk1, sk2q “ pJa{pb` 3qK2, JaK2q. Then, it
picks two messages at random and sends them together with the target set for
attributes Γ “ t1, 2u. It will receive

ct “ pct1, ct2, ct3, ct4q “ pJs̄1pb` 1qK1 , Js0 ´ s̄1K1 , Js̄2pb` 2qK1 , Js0 ´ s̄2K1q
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D ::“ D _D | S disjunction

S ::“ Dk P K.S | C symbolic constraint (k P Idx)

C ::“ C ^ C | @ k P K. C conjunction (k P Idx)

| E “ 0 | E ‰ 0

E ::“ E ` E | E ˚ E | E{E expression (k P Idx)

| E ˝ E | diagpEq

|
ÿ

kPK
E |

ź

kPK
E

| ´ E | EJ |M | S atom pS P Zq

K ::“ Γ | Kztku index set pk P Idx,Γ P Setq

We assume given sets Var,Par, Idx, Set of variables, parameters, indices and
index sets respectively. Matrices M are associated to a name ρ P Var Y Par, a
dimension mˆ n (m,n P N) and a domain Zp or t0, 1u Ă Zp. Our syntax ˝
stands for pair-wise product between vectors. Additionally, for a vector
v P Znp , diagpvq represents the null matrix in Znˆnp , where the main diagonal is
replaced by vector v.

Figure 5.6: Grammar for symbolic constraints.

where s0, s̄1, s̄2 are fresh random values in Zp. Now, the following linear combi-
nation

´ epct1, sk1q ` 2epct2, sk1q ´ epct2, sk2q`

2epct3, sk1q ´ 2epct4, sk1q ` 2epct4, sk2q

equals the symmetric key κ “ Jas0Kt derived from encryption. This allows the
adversary to fully recover the plaintext and win the experiment. That is due to
the following relation:

´ S̄1A
B ` 1

B ` 3
` 2A

S0 ´ S̄1

B ` 3
´ ApS0 ´ S̄1q

` 2S̄2A
B ` 2

B ` 3
´ 2A

S0 ´ S̄2

B ` 3
` 2ApS0 ´ S̄2q „rf AS0 .
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Scheme Time (s) Proof Security

IBE 1 [191] 0.016 X Many-key
IBE 2 [62] 0.001 X One-key˚

IPE 1 [138] 0.001 X One-key˚

IPE 2 (New) 0.027 X Many-key
KP-ABE [116] - ˆ -

Compact KP-ABE (New) - m -
Unbounded KP-ABE (New) - m -

KP-ABE [116] - ˆ -
(�xed-size γ “ ` “ r` “ 2) 0.046 X One-key
(�xed-size γ “ ` “ r` “ 3) 1.52 X One-key

CP-ABE (New) - ˆ -
(�xed-size γ “ ` “ r` “ 2) 0.212 X One-key
(�xed-size γ “ ` “ r` “ 3) 5.75 X One-key

Spatial Encryption [76] 0.005 X One-key˚

Doubly Spatial Enc. [76] 0.013 X One-key˚

KP-ABE [76] 0.256 X One-key˚

CP-ABE [76] 0.206 X One-key˚

NIPE,ZIPE [76] 0.003 X One-key˚

CP-ABE for negated bf. [19] 0.084 X One-key˚

Unbounded KP-ABE4 0.006 Attack Insecure

Table 5.3: Encodings analyzed with our automatic tool. The �rst group corre-
sponds to the encodings from this Chapter (Section 5.4). X means the tool fully
proved the scheme, ˆ means it could not prove the scheme and m means the
scheme cannot be expressed in our grammar. For every scheme we provide the
level of symbolic security that was analyzed. For the schemes marked with ˚,
one-key symbolic security is enough to achieve many-key security in the GGM
(see Theorem 18).

The above attack can be easily missed when designing the primitive, since
it involves a linear combination of six terms on a primitive that at a �rst sight,
looks secure. That is an evidence of the subtleties that inversion in the exponent
and the GGM may involve and it justi�es the need of rigorous formalization
and the design of automated methods for veri�cation.
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Implementation and case studies. We have implemented our method in a
tool7 and used the tool on several case studies. Table 5.3 summarizes the results.
Our tool is able to prove automatically the symbolic security of our encodings
IBE 1, IBE 2, IPE 1, IPE 2 and several encodings from the literature, like CP-
ABE's and KP-ABE's from [76], or the CP-ABE for negated boolean formulas
from [19]. For the most complex examples, like our CP-ABE and KP-ABE, our
tool is only able to prove security for �xed-size dimensions. In some cases this is
because it is hard to express the security of the full scheme with our grammar,
while in others, our heuristics do not succeed in �nding a proof. The tool can
also �nd the attack against the candidate Unbounded KP-ABE4 automatically.

Comparison with previous work. We note that our tool follows the ap-
proach of the Generic Group Analyzer, gga [43] and the Generic Group Analyzer
Unbounded, gga8 (Chapter 3), and as the later our tool can express systems of
equations depending on an unbounded number of terms, which allows to handle
many security experiments of interest. Additionally, our tool is de�ned over a
new grammar (described in Figure 5.6) and therefore, it complements previous
tools and broadens the class of schemes than can be analyzed with computer-
assistance. In particular, our handling of division { and big products

ś

su�ces
to handle many of the primitives proposed in this Chapter.

5.6 Performance evaluation

We have implemented the schemes introduced in the previous section, as well
as several Identity-Based Encryption from the literature. Our implementation
uses Charm [13] for pairings with a prime-order 224-bits Miyaji, Nakabayashi
and Takano elliptic curve [159]. The experiments were executed on a 2.40GHz
Intel Core i7-3630QM CPU with 8GB of RAM. We use our implementations to
compare the performance between the di�erent schemes (see Figure 5.7). Ex-
pectedly, IBE 1 outperforms other constructions, highlighting the usual trade-o�
between e�ciency and security in the standard model. We provide more details
below.

For every construction, we evaluate the performance of setup, encryption,
key generation and decryption on 100 executions, displaying the average time
(in milliseconds). Encryption and key generation take an identity as input,
which is chosen uniformly at random (in Zp) in every execution (this is not
considered part of the execution time). We also include the IBE of Boneh and
Franklin [64], arguably on of the most e�cient IBE (which is proven secure in

7Source code and input �les available at https://github.com/miguel-ambrona/

ggm-symbolic-solver.
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Figure 5.7: Execution time for di�erent IBE schemes.

IBE mpk msk ct sk

IBE 1 G1 ˆGt Z2
p G1 G2

BonBoy [61] G2
1 ˆGt Z3

p G2
1 G2

2

BonFra [65] G1 ˆ pZp Ñ G2q Zp G1 G2

Gentry [112] G1 ˆG2 ˆGt Zp G1 ˆGt Zp ˆG2

Table 5.4: Key and ciphertext sizes of IBE algorithms.

the Random Oracle Model). Note that the encryption in IBE 1 is more e�cient
that in [64], since contrary to the latter, IBE 1 does not require to hash into the
source group G1, and it does not require to compute a pairing. To make the
comparison more fair, in our implementation of [64], we consider a naive and
e�cient hashing from Zp into G1 (performed once in encryption and once in
key generation). Note, however, that for security, this hashing cannot be done
naively (see [70] for instance).
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5.7 Concluding remarks

In this chapter, we presented an automated method for analyzing security of
ABE in the Generic Group Model. Our work signi�cantly broadens the scope
of automated analyses in the GGM, and nicely complements prior works on
proving security of ABE in the standard model. We have shown how our tool
can be used for proving automatically security of several schemes, including
some variants of previous schemes or new schemes, and for discovering subtle
attacks.
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Automated synthesis of

indi�erentiability attacks

Children have a very good idea of how to distinguish between fantasies and
realities. It is just they are equally interested in exploring both.

Alison Gopnik, 2009

We propose fully automated methods for �nding indi�erentiability attacks.
Our techniques focus on universal distinguishers, for which no simulator exists.
We formally de�ne the notion of universal distinguisher and provide methods for
proving the universality of a candidate distinguisher. Moreover, we show how
our methods can �nd universal distinguishers given minimal user guidance. We
implement our approach and evaluate its e�ectiveness.

6.1 Introduction

The framework of indi�erentiability was introduced by Maurer et al. [157] in
2004. It extends the classical notion of indistinguishability and simpli�es the
analysis of cryptographic constructions. In particular, the indi�erentiability of
certain (real) cryptographic component C from another (ideal) component R
guarantees that the security of a cryptosystem depending on R is not a�ected
if R is replaced by C. Coron et al. [84] showed how to apply indi�erentiability
to the �eld of hash functions and domain extenders. However, the scope of this
indi�erentiability framework is limited as showed by Ristenpart et al. [168].
They showed that the features provided by the indi�erentiability can be safely
applied to single-stage security games, but these techniques do not scale to

135



6. Automated synthesis of indi�erentiability attacks

Figure 6.1: Indi�erentiability security experiment. CFi represents the real com-
ponent, dependent on the small ideal components Fi. R represents an ideal
function with the same interface as C, while SR is a simulator (with oracle
access to R) that simulates the small components Fi. Distinguisher D must
decide whether it is playing in the real or in the ideal world.

multi-stage1 security games, since there are examples where the same techniques
fail.

The notion of indi�erentiability is de�ned with a security game played by a
distinguisher D and an oracle system (see Figure 6.1). The distinguisher must
decide whether it is playing in the real world or in the ideal world. In the
real world, it has oracle access to a real component CFi (depending on smaller
ideal components) and oracle access to the individual components Fi. On the
other hand, in the ideal world, it has oracle access to an ideal random function
R and a simulator SR that simulates the small ideal components. Note that
the simulator has access to R, but the queries made by D to the random or-
acle R are hidden from the simulator's view. This security game captures the
notion of indi�erentiability, in particular, the classical notion of indi�erentia-
bility establishes that there exists a simulator S such that the probability of
winning the above game is negligible for every (information-theoretic) distin-
guisher D. Intuitively, indi�erentiability guarantees that the real component
CFi looks completely random to any observer that has no oracle access to the
small components Fi.

The standard approach of showing that certain cryptographic component
is indi�erentiable from a random component is to explicitly build a simula-
tor and prove that any distinguisher would fail in distinguishing between the
real and the ideal worlds in the presence of such a simulator. On the other
hand, showing that a cryptographic component is non-indi�erentiable from a
random component is done by presenting a distinguisher that would distinguish
with non-negligible probability against any possible simulator, this is known

1Security games where the distinguisher forgets some information during its attack.
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as a universal distinguisher. Note that these de�nitions of indi�erentiability
and non-indi�erentiability are exclusive, but not exhaustive. A cryptographic
primitive could be such that for every distinguisher there exists a successful
simulator and that for every simulator there exists a successful distinguisher
(see Figure 6.4).

In both cases and for most of the cryptographic primitives of interest, error-
prone calculations must be performed and proofs involve very subtle arguments
that are hard to verify and in some occasions contain mistakes. For example,
Coron et al. showed [87] that the 6-rounds Feistel network is indi�erentiable
from a random permutation, while two years later, Holenstein et al. pointed out
[126] that the proof from [87] was incorrect, invalidating their result2. These ex-
amples suggest the importance of developing general tools to assist the analysis
of security proofs in the framework of indi�erentiability analysis.

6.1.1 Approach

In this work, we propose, implement and evaluate automated methods for a-
nalyzing cryptographic components in the framework of indi�erentiability, with
special emphasis on formalizing and automatically �nding universal algebraic
distinguishers.

In particular, we introduce the notion of indi�erentiability under universal
algebraic attacks. A distinguisher is algebraic if it performs operations from a
restricted class, in the spirit of the Generic Group Model [156, 160, 182] and
the Algebraic Group Model [107]. Roughly, we consider distinguishers that are
restricted to perform operations that are used as building blocks of the crypto-
graphic component, thereby, if a primitive is built based on ‘ of n-bit strings
and permutations P : t0, 1un Ñ t0, 1un, distinguishers are allowed to use these
two operations, but they are not allowed to compute other operations such as
the bit-wise conjunction of two bit-strings, for example. While we do not ad-
vocate considering these restricted adversaries over non-limited ones, there are
several reasons for our approach. First, our goal is to disprove the indi�erentia-
bility of given cryptographic components, and therefore, it is enough to �nd a
successful (possibly restricted) distinguisher, while the absence of arbitrary dis-
tinguishers would not imply indi�erentiability. Second, our approach is a �rst
step towards the more general setting that considers distinguishers modeled as
arbitrary p.p.t. machines. Third, it is not clear whether non-algebraic opera-
tions can be useful to perform an attack, because the cryptographic component
is not based on such operations. In fact, we review existing attacks from the
literature and show that they fall into the class of universal algebraic attacks.

2It remains open whether or not the 6-rounds Feistel network is indi�erentiable from a
random permutation.
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In order to capture algebraic distinguishers, we de�ne a symbolic model of
indi�erentiability and prove a Master Theorem which relates indi�erentiability
under universal algebraic attacks to symbolic indi�erentiability (for a similar
notion of universal algebraic attacks). The main bene�t of the symbolic model
is that winning conditions are now expressed in purely algebraic terms.

We develop algorithms (decision procedures) for testing the universality of
a distinguisher. These algorithms leverage techniques from uni�cation theory
such as deductibility or static equivalence.

We implement and evaluate our method for several frameworks: Feistel
networks, Even-Mansour ciphers, Merkle-Damg̊ard or confusion-di�usion net-
works. We formalize and recover automatically many known attacks from the
literature, as well as some new attacks.

6.1.2 Our contributions

First, we de�ne a general language to express security experiments in the frame-
work of indi�erentiability. Our language is equipped with a set of simpli�cation
rules that de�ne the equational theory of groups of prime-characteristic, with
uninterpreted function symbols and invertible functions. This language allows
to capture security experiments associated to cryptographic primitives such as
Feistel networks, Even-Mansour ciphers, confusion-di�usion networks, etc. We
then establish a Master Theorem à la Generic Group Model [17, 18, 43, 63,
156, 160, 182] which states that our symbolic language is negligibly close to the
actual probabilistic model of computation. Roughly, this allows us to say that
the conclusions derived from our restricted symbolic model can be extended
without a signi�cant loss to the standard probabilistic model. For example,
to show the absence of an algorithm winning certain security experiment with
signi�cant probability, it is enough to show the absence of an algorithm winning
a more restricted algebraic experiment expressed in our language.

Second, we provide a general framework to formally analyze the universal-
ity3 of indi�erentiability distinguishers. Speci�cally we de�ne a grammar for
distinguisher (see Figure 6.8) and provide a method to transform such a de-
scription into a system of symbolic equalities and inequalities. This system is
solvable if, and only if, there exists a simulator for the distinguisher, i.e., the
attack is universal if, and only if, the system has no solution. We note that
our grammar is general enough to capture, to the best of our knowledge, all
indi�erentiability attacks from the literature. We develop dedicated algorithms
to decide whether the system of constraints expressed in our symbolic model
has a solution or not.

3A universal distinguisher is a p.p.t. algorithm that distinguishes between the real and the
ideal scenarios with non-negligible probability against any simulator.

138



6.1. Introduction

Figure 6.2: Scheme of a k-rounds Feistel network.

Third, we implement our methods and evaluate their e�ectiveness on actual
case studies, formalizing and corroborating known indi�erentiability attacks.

As an independent contribution, our framework can be used to automat-
ically �nd indi�erentiability attacks on various cryptographic primitives. We
propose two di�erent heuristic approaches in this direction (see Section 6.6.2).
We evaluate these heuristics on primitives from the literature and we automati-
cally �nd attacks for some of them. In the case of 5-rounds Feistel networks we
present a new attack, with a di�erent structure to the one proposed by Coron
et al. in [85] found with our tool.

We believe our results complement other works in the framework of indif-
ferentiability. Our tool allows to formalize existing results (and potentially
new ones) gaining con�dence about their validity and extending the scope of
computer assistance to this delicate and very important topic in cryptography.

6.1.3 Motivation: indi�erentiability of Feistel networks

A k-rounds Feistel network [103] (Figure 6.2) is a symmetric block cipher that
takes as inputs two n-bitstrings x0, x1 P t0, 1u

n, and returns two n-bitstrings
xk, xk`1 P t0, 1u

n, which we will denote by Feistelkpx0, x1q. As evidenced by
Figure 6.2, for every i P rks, xi`1 is computed as xi´1 ‘ Fipxiq, where Fi :
t0, 1un Ñ t0, 1un are round functions. Feistel networks have the good property
that they are invertible. They can be used to build pseudorandom permutations
from (non-invertible) pseudorandom functions (as round functions). Note that
the inverse can be build by running the network backwards, which can be done
by evaluating the round functions in the same direction as for running the
network forwards.

A long-standing open problem in cryptography is to determine the minimal
number of rounds that are necessary for a Feistel network to become �equiv-
alent� to a pseudorandom permutation, when all round functions are random
functions. Coron, Patarin and Seurin [87] prove that six rounds are necessary,
by providing explicit distinguishers for k-rounds Feistel networks, for k ď 5.
They also argue that 6 rounds su�ce; however, Holenstein, Künzler and Tes-
saro [127] later identify a �aw in their argument and prove indi�erentiability
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for 14 rounds. A subsequent spate of papers [89, 92, 93] shows that indi�eren-
tiability holds for lower number of rounds. Currently, it is known that k “ 8
su�ces, but it is still an open problem whether k “ 6 or k “ 7 su�ce for
indi�erentiability.

Formally, the indi�erentiability of k-rounds Feistel networks from a random
permutation is de�ned in terms of a game between a distinguisher and a simu-
lator. The distinguisher, tries to distinguish between the real and the random
(or simulated) worlds. For the speci�c case of Feistel networks:

‚ In the real world, the distinguisher will be querying a real component
Feistelk corresponding to the Feistel network, based on round functions Fi

which are implemented as true independent random functions.

‚ In the ideal world, the distinguisher will be querying a random permuta-
tion R and a simulator (Susan) that simulates the round functions and
that also has access to R.

We use symbol C to generically refer to the main oracle, i.e., to Feistelk in the
real world or R in the ideal world. In order to separate between the two worlds,
the distinguisher will perform a computation c, involving procedure calls and
check the validity in both worlds of a system of equalities E between outputs,
and possibly intermediate computations, of c. In this article, we consider the
special case of universal distinguishers, when the system E, seen as an event, has
probability 1 in the real world, whereas for every simulator S, the probability
of system E in the ideal world is upper bounded by a negligible function in the
security parameter n.

Figure 6.3 presents two distinguishers Daisy and David for a 3-rounds Feistel
network. Note that the only di�erence between the two programs is that their
third and fourth instructions are swapped.

We claim that David is a universal distinguisher, whereas Daisy is not. To
support this claim, �rst note that the distinguishing event holds in the real
world, since, by de�nition,

π1pFeistel3px0, x1qq “ x1 ‘ F2px0 ‘ F1px1qq

where π1pFeistel3px0, x1qq stands for the �rst output of Feistel3px0, x1q. Now,
consider the case of a simulator (Susan) playing against Daisy. In order to
make Daisy think that she is playing in the real world, Susan should answer the
queries on lines 3 and 4 in such a way that the assertion is satis�ed. However,
Susan can only answer the queries based on her current knowledge when the
query is asked (note that Susan does not see the queries performed by the
distinguisher to the main oracle C). For instance, when F2 is queried, Susan
can use the input and output of the query to F1. In particular, when F2 is
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Daisy:

1 x1 Ð$ t0, 1u
n

2 x2 Ð$ t0, 1u
n

3 f1 Ð qpF1, x1q

4 f2 Ð qpF2, x2q

5 x0 Ð f1 ‘ x2

6 py, y1q Ð Cpx0, x1q

David:

1 x1 Ð$ t0, 1u
n

2 x2 Ð$ t0, 1u
n

3 f2 Ð qpF2, x2q

4 f1 Ð qpF1, x1q

5 x0 Ð f1 ‘ x2

6 py, y1q Ð Cpx0, x1q

Distinguishing event: y “ x1 ‘ f2

Figure 6.3: Distinguishers for 3-rounds Feistel.

queried, Susan can call R with input pf1 ‘ x2, x1q, getting pr, r1q, and return
x1 ‘ r.

Equivalently, the task of Susan can be captured by a constraints system com-
bining equational constraints and deductibility constraints. These constraints
capture both the behavior of the distinguisher and the distinguishing event, and
are stated for an equational theory consisting of unary symbols F1, F2, F3 and
a binary symbol ‘, with the usual axioms for exclusive or, a binary symbol C
that outputs pairs, and two unary symbols π1 and π2 for projections, subject
to the usual axioms for projections.

Equational constraints are of the form e “ e1, where e and e1 are either terms
of the signature or uni�cation variables α, whereas deductibility constraints are
of the form te1, . . . , enu $ α, stating that there exists an e�cient algorithm to
compute α from e1, . . . , en. A solution to the constraints system is given by
a mapping from uni�cation variables to terms, so that all constraints of the
system (equational and deductibility) are satis�ed. The equational constraints
for Daisy and David coincide:

f1 “ F1px1q “ α1 f2 “ F2px2q “ α2 x0 “ f1 ‘ x2

py, y1q “ Cpx0, x1q y “ x1 ‘ f2

However, the deductibility constraints di�er:

Daisy's constraints: x1 $ α1 ^ x1, f1, x2 $ α2

David's constraints: x2 $ α2 ^ x2, f2, x1 $ α1 .

The task of Susan is to solve the constraints systems. Note that in the case
of Daisy, the system admits a solution:

α2 ÞÑ x1 ‘ π1pCpα1 ‘ x2, x1qq .
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Note that there is no constraint on the choice of α1. This substitution validates
the equality constraints and the deductibility constraints. On the other hand,
the system has no solution in the case of David. To see it, observe that no term
t depending only on x2 can satisfy the equation y “ x1 ‘ t.

The above paragraph suggests that checking whether a distinguisher is uni-
versal can be reduced to solving constraints systems. In the next sections, we
make this intuition formal.

6.2 Preliminaries

6.2.1 Notation

For an arbitrary binary operator ‹ and m P N, we denote by x ‹ mq. . . ‹x the
combination through ‹ of x, m times with itself. By rs we denote the empty list
and by ras a list with single element a. Given two lists, `1, `2, their concatenation
is denoted by `1:: `2.

6.2.2 Indi�erentiability security game

The security experiment for the indi�erentiability of a real component from an
ideal component is a game where a distinguisher (who has oracle access to one
of the two) needs to decide whether it has access to the real or the the ideal
component.

The real component CFi depends on smaller ideal components Fi, while the
ideal component R does not depend on other components, but there exists a
simulator SR with access to R that provides answers to the small components
in order to pretend R is the real component C. More concretely, we recall the
standard de�nition of indi�erentiability of C from ideal component R.

De�nition 33 (Indi�erentiability). The construction CFi with access to random
functions pF1, . . . ,Fkq is ptS , qS , εq-indi�erentiable from an ideal component R
if for every qD P N, there exists an algorithm S, called simulator, running in
total time tS and making at most qS queries to R, such that,

ˇ

ˇ

ˇ
PrrDCFi ,Fi “ 1s ´ PrrDR,SR

“ 1s
ˇ

ˇ

ˇ
ď ε

for every (information-theoretic) distinguisher D that makes at most qD queries
in total to its oracles.

In general, we say that C is indi�erentiable from R when for every qD that
is polynomial in the security parameter n, the construction is ptS , qS , εq-indi�e-
rentiable from R, where tS and qS are some polynomials in n and ε is certain
negligible function in n (note that tS , qS , ε depend on qD).
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The standard way of arguing that certain component is not indi�erentiable
from an ideal component is to show that there exists a universal distinguisher,
i.e., an algorithm that can distinguish between the real and the random worlds
with signi�cant probability, for every possible simulator.

De�nition 34 (Universal distinguisher). Let CFi be a cryptographic component
with access to random functions pF1, . . . ,Fkq and let R be an ideal component.
An oracle algorithm D, that outputs one bit is called a pqD, δq-universal distin-
guisher against the indi�erentiability of CFi from R, where qD, δ are real poly-
nomials in certain variable ` if for every ` P N and every information-theoretic
algorithm S making at most ` queries to its oracles, it holds,

ˇ

ˇ

ˇ
PrrDCFi ,Fi “ 1s ´ PrrDR,SR

“ 1s
ˇ

ˇ

ˇ
ě

1

δp`q

where the number of queries made by D to its oracles is upper-bounded by qDp`q.

In general, we say a distinguisher is universal if there exist polynomials
pqD, δq such that the distinguisher is a pqD, δq-universal distinguisher.

6.2.3 The problem statement

In this work, we focus on the problem of deciding whether a distinguisher is
universal or not, i.e., given the description of a distinguisher, deciding if it
succeeds with signi�cant probability in the presence of any possible simulator.

As mentioned earlier, �nding a universal distinguisher is actually the stan-
dard approach of arguing that certain cryptographic component is not indif-
ferentiable from an ideal component (such as a random function or a random
permutation). However, that is not the only possible way of arguing that cer-
tain primitive does not satisfy indi�erentiability. In Figure 6.4 we divide the
set of all cryptographic components into three classes:

‚ Indi�erentiable components : these components satisfy a strong guarantee
of security, namely, there exists a simulator that wins the indi�erentia-
bility game against any distinguisher. As shown by Maurer et al. [157],
such components can be used to replace ideal components and the security
proofs (in the random oracle model) will not be a�ected.

‚ Limbo components : these primitives are not indi�erentiable because there
is not a single simulator that wins the indi�erentiability game against any
distinguisher, but on the other hand, all distinguishers fail to di�erentiate
the real world from the ideal for certain (convenient) simulator. This
condition provides them with some security guarantees, we could say that
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Figure 6.4: Classi�cation of cryptographic components in the indi�erentiability
setting.

the output of these primitives looks random, but they should not be used to
replace a random oracle unconditionally. To the best of our knowledge, no
cryptographic component has been shown to belong to this class. Proving
membership to this class is a very challenging goal and would require
di�erent new techniques to the ones used for arguing indi�erentiability.
Actually, the fact 6 or 7 rounds Feistel networks belonged to this class
would explain the lack of progress solving the open problem for Feistel.

‚ Di�erentiable components : these primitives admit a universal attack and
they should not be used in the place of a random oracle. The standard way
of arguing that a cryptographic component is not indi�erentiable is show-
ing that it belongs to this class, by providing a universal distinguisher.

We note that our goal (developing a method for deciding whether a given dis-
tinguisher is universal) is non-trivial. That is due to the distinguisher-simulator
paradigm. Unlike for disproving security in the Generic Group Model (where
given the attacker's description, checking that the attacker is successful is a
straightforward task), for disproving indi�erentiability following this approach,
although the description of the distinguisher is given, it is required to prove that
such a distinguisher is successful against all possible simulators. Such proofs are
usually done ad hoc, they depend on the speci�c attack and the primitive that
is being analyzed. For example, Coron et al. provide in Section 2 of [85] an
attack against the indi�erentiability of the 5-rounds Feistel construction from a
random permutation and they show that the attack is universal in Lemma 2.2.
Dai et al. show in Section 3 of [90] an attack against the indi�erentiability of
the 4-rounds iterated Even Mansour cipher and they prove that the attack is
universal in Theorem 1, supported by Lemma 2.
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Figure 6.5: Scheme of `-rounds Iterated Even-Mansour

In this work, we propose a general method for analyzing the universality
of the distinguishers. Our method does not rely on the primitive that is being
analyzed nor the structure of the attack, although it is restricted to algebraic
distinguishers. To the best of our knowledge, all existing attacks from the
literature are algebraic.

6.2.4 Algebraic distinguishers

An algebraic distinguisher is restricted to perform operations from a limited
set. Roughly, they are limited to the set of operations used for de�ning the
cryptographic component. Figure 6.6 describes the grammar for expressions
that we consider. That is, our model captures all cryptographic components
that can be described as maps from variables in Var to expressions of grammar
Ep. Therefore, our algebraic distinguishers will be somehow limited by this
grammar too. We refer to Section 6.3 for a syntactic and semantic description
of the algebraic distinguishers that we consider.

De�nition 35 (Algebraic universal distinguisher). We say an algorithm is an
algebraic universal distinguisher against the indi�erentiability of CFi from R
if it is a universal distinguisher and it can be expressed as in De�nition 37
(Section 6.3).

6.2.5 Algebraic operations

The algebraic operations that we consider (described in Figure 6.6) have been
chosen to capture many primitives of interest. In particular, we consider a
grammar for expressions over a commutative group of prime characteristic p
and, accordingly, our grammar is equipped with a set of simpli�cation rules
(see Figure 6.7).

Names from Name are used to represent constant group elements of the
group. Variables from Var are used to de�ne placeholders that can be �lled
with other expressions. Operator `p is used to represent the group law. Fi-
nally, function symbols from Fun are used to represent uninterpreted functions
in expressions, and they will be used to represent random oracles or the round-
functions on which the cryptographic constructions are based. When such func-
tions are permutations, they admit an inverse.
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Ep fi | 0 zero

| c name, c P Name

|x variable, x P Var

| Ep `p Ep addition

|FipLq function evaluation, i P N, F P Fun

|F´1

i pLq inversion, i P N, F P InvFun Ď Fun

L fi Ep | Ep,L non-empty list of expressions

Figure 6.6: Grammar Ep for expressions.

px`p yq `p z “ x`p py `p zq associativity

x`p y “ y `p x commutativity

x`p
pq. . . `p x “ 0 p-characteristic

x`p 0 “ x identity

F´1

i px, F1px,yq, . . . , Fmpx,yqq “ yi inversions, @i P t1, . . . ,mu

Fipx, F
´1

1 px,yq, . . . , F
´1

m px,yqq “ yi

Figure 6.7: Simpli�cation rules for expressions from grammar Ep. For arbitrary
expressions x, y, z and vectors of expressions x P Ekp , y P Emp and function
F P InvFun Ď Fun.

Many cryptographic constructions of interest are de�ned over bitstrings and
therefore, can be described in our grammar for p “ 2 (we use ‘ symbol to
refer to `2). For example, a 2-rounds Feistel network can be represented in our
grammar as follows:

px0, x1q ÞÑ px0 ‘ F1px1q, x1 ‘ F2px0 ‘ F1px1qqq

where x0, x1 P Var, F1, F2 P Fun. Or the 3-rounds Even Mansour (see Figure 6.5)
component can be represented as follows:

pk, xq ÞÑ P3pP2pP1px‘ kq ‘ kq ‘ kq ‘ k

where k, x P Var, P1, P2, P3 P InvFun.
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6.3 Syntax and Semantics for algebraic distin-

guishers

In this section we describe the syntax for our distinguishers and provide formal
semantics for distinguishers and simulators.

6.3.1 Syntax of distinguishers

We �rst de�ne a system of constraints as a set of symbolic equalities and sym-
bolic inequalities:

De�nition 36 (System of constraints). A system of constraints E is a pair
pE“, E‰q, each of which is a set of pairs of (symbolic) expressions from Ep.

Roughly, an algebraic distinguisher is a computation together with a se-
quence of distinguishing events:

De�nition 37 (Algebraic distinguisher). An algebraic distinguisher is a pair
pc, Eq where c is a computation from grammar C (see Figure 6.8) and E is a
system of constraints.

As described in Figure 6.8, an algebraic distinguisher pc, Eq is allowed (in
computation c) to sample group elements uniformly from a group G (of prime
characteristic p), invoke oracles (corresponding to both, the oracle for the main
component of the indi�erentiability game and the round functions on which it
is based), and perform algebraic operations (restricted by the grammar of Ep).
Distinguishers are also allowed to perform probabilistic choices, denoted by ||
(see Section 6.5.4.2 for details about this extra feature, also called branching).
We require computation c be such that on every branching c1||c2, the variables
de�ned inside c1 are disjoint from those de�ned in c2 (this is without loss of gen-
erality). At the end of its computation, the distinguisher will evaluate whether
the distinguishing events E hold, and will terminate, outputting value 1 or 0
depending whether all events in E were satis�ed or not (respectively).

Below, we formally de�ne the semantics of computation c and give a de�ni-
tion for the satis�ability of E.

6.3.2 Semantics of distinguishers

The probabilistic semantics J¨K of a computation, map an initial memory Mem
(which is a partial map from variables to group elements from a group G) to a
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C fi | cmd; C sequence of commands

| C || C probabilistic choice

| end �nishing command

cmd fi | xÐ$ G sample random value, x P Var

|xÐ qpF, b, i,Lq query, x P Var, i P N, b P t´1,`1u, F P Fun

|x :“ Ep assignment, x P Var

Figure 6.8: Syntax of algebraic computation for distinguishers.

distribution over �nal memories.

Mem : Var Ñ G
J¨KO : C ˆMem Ñ DpMemq

J¨Kcmd
O : C ˆMem Ñ Mem

Jc1; c2KO fi λσ. Jc2KOpJc1Kcmd
O pσqq

Jc1 || c2KO fi λσ. p1{2q¨Jc1KOpσq`p1{2q¨Jc2KOpσq
JendKO fi λσ. δpσq

JxÐ$ GKcmd
O fi λσ. σrx ÞÑ UnifpGqs

JxÐ qpF, b, i, eqKcmd
O fi λσ. σrx ÞÑ OpF, b, i, σpeqqs

Jx :“ eKcmd
O fi λσ. σrx ÞÑ rσpeqs

By JcKO we denote the semantics of the distinguisher's computation c in the
presence of the oracles O “ pO1,O2q. Both, O1,O2 are stateful machines that
take on input queries of the form pF, b, i, eq and output group elements from G,
where F is an identi�er for the function, b P t´1,`1u indicates the direction (in
case of invertible functions), i corresponds to the index of the output (in case
of multi-output functions, i.e., Fi denotes πi ˝F where πi is the i-th projection)
and e is a list of group elements representing the input to the function. By
δ we denote the Dirac delta function, i.e., the degenerate distribution, and by
UnifpGq we denote a uniform sampling from group G. Finally, rσ is interpreted
as the natural extension from σ to expressions.

Without loss of generality, we require the distinguisher be such that in ev-
ery command of the form x ÞÑ OpF, b, i, σpeqq or x :“ e, expressions e, e do
not contain function symbols nor fresh variables (variables that have not been
de�ned in previous calls). That �rst restriction enforces the distinguisher to be
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explicit in the order of its oracle calls (what simpli�es the analysis as we will see
in further sections), while the second restriction enforces the distinguisher to be
well-de�ned. Observe that, under this restriction, rσpeq will be well-de�ned and
it will always be a group element.

De�nition 38 (Satisfying systems of constraints). Given a system of con-
straints E “ pE“, E‰q and given a map σ : Var Ñ G, we say that σ satis�es E
(denoted by σ |ù E) if

‚ for every pe1, e2q in E“ s.t. varspe1, e2q Ď dompσq, it holds σpe1q “G σpe2q,

‚ for every ppe1, pe2q in E‰ s.t. varsppe1, pe2q Ď dompσq, it holds σppe1q ‰G σppe2q.

In these conditions, a distinguisher pc, Eq is interpreted as an algorithm that
samples a map σ Ð JcKOpHq and returns 1 if σ |ù E or 0 otherwise (here, H
denotes the empty map).

6.3.3 Semantics of simulators

We will not give simulators a speci�c grammar, rather we will specify them
based on the way they can respond to queries.

A query is a pair pf, xq of a function name f and an argument x. We are
going to model simulators as symbolic and deterministic programs that take
a list of queries and return a list of answers of equal length such that the
answer to the i-th query is a symbolic combination of the arguments of the �rst
i´1 queries. We can justify the restriction to deterministic simulators by the
following lemma:

Lemma 9. If there is a winning probabilistic simulator, there is also a winning
deterministic simulator.

Sketch. The main idea behind the proof is that a probabilistic simulator S is
just a convex combination ρ1S1 ` ρ2S2 ` ¨ ¨ ¨ ` ρkSk of deterministic simulators
for some k P N. If S wins with some probability p, then

p “ PrrSs “ ρ1PrrS1s ` ¨ ¨ ¨ ` ρkPrrSks

and therefore there exists some i P rks such that PrrSis ě p. l

More precisely, we will consider a simulator to be a stateful program that
responds to queries from

Q “ tpF, b, i, eq : F P Fun, b P t´1,`1u, i P N, e from Lu

Because when responding to a query, the simulator can take into account all the
previous queries, we can assume that a simulator is a stateless program that,
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receives a list of queries (corresponding to the history) and responds to the last
one:

S : List QÑ Ep

Note that expressions returned by simulators may contain function symbols
(corresponding to their own access to the random oracle).

6.3.4 Characterization of universal algebraic distinguishers

Before giving a characterization of universal algebraic distinguishers in terms of
the de�ned semantics for distinguishers, we de�ne the notion of instantiating a
symbolic expression.

De�nition 39 (Instantiation of expressions). Let G be a group of characteristic
p and let e be a ground (without variables) expression of grammar Ep. We de�ne
the instantiation of expression e in G, denoted by instGpeq, as the group element
obtained after the following steps:

‚ Let ν : Name Ñ G, ϕ : Fun Ñ pG˚ Ñ G˚q be empty maps.

‚ For every c P namespeq, overwrite ν with νrx ÞÑ UnifpGqs.

‚ For every F P funspeq, sample f from the set of all functions (from group
elements of G to group elements of G with the adequate arity (or from the
set of all permutations when F P InvFun), and overwrite ϕ with ϕrF ÞÑ f s.

‚ Interpret expression e by replacing every name and function symbol as
dictated by ν and ϕ respectively. Or more precisely, return evalν,ϕpeq,
where

evalν,ϕpeq “

$

’

’

&

’

’

%

0 if e matches 0
νpcq if e matches c P Name
evalν,ϕpe1q `G evalν,ϕpe2q if e matches e1 `p e2

pπi ˝ ϕpF q
b ˝ evalν,ϕqpeq if e matches F b

i peq

where `G represents the group law of G.

Very roughly, instG of a ground expression is the group element resulting of
replacing every name by a uniformly random group element and interpreting ev-
ery function as a random function. Note that the instantiation of an expression
can be e�ciently implemented by lazy sampling.

We naturally extend the notion of instantiation of an expression to the
instantiation of a symbolic oracle O in G, denoted by rO, which corresponds
to the oracle that, instead of returning expressions from grammar Ep, returns
group elements by applying instG in a systematic and consistent way.
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De�nition 40 (Characterization of universal algebraic distinguishers). A pair
pc, Eq represents a pqD, δq-universal distinguisher if for every symbolic simulator
S (making ` queries to its oracles),

ˇ

ˇ

ˇ
PrrmÐ JcK

rC, rFpHq : m |ù Es ´ PrrmÐ JcK
rR, rSpHq : m |ù Es

ˇ

ˇ

ˇ
ą

1

δplq

where qD is the number of oracle calls in computation c.

In general, a distinguisher is said to be a universal (probabilistic) distin-
guisher if it is a pqD, δq-universal distinguisher for certain polynomial δ.

6.4 Symbolic Model and Master Theorem

We de�ne a symbolic model in which the security experiment is purely deter-
ministic. The main di�erence between this model and the previous probabilistic
model is that in this experiment everything is expressed in terms of symbolic
expressions and not group elements.

Expressions from grammar Ep (Figure 6.6) combined with simpli�cation rules
from Figure 6.7 de�ne an equational theory, T . We say two expressions, e1, e2,
are equivalent in T , denoted by e1 “T e2 if one can be rewritten to the other
by using the rules from Figure 6.7. In order to describe our symbolic model, we
start by de�ning symbolic semantics for distinguishers' programs.

6.4.1 Symbolic semantics of distinguishers

The symbolic semantics LcM, of a computation c, map an initial symbolic memory
to a list of pairs of weights and �nal symbolic memories. In this case, a symbolic
memory is a map from variables to symbolic expressions (from grammar Ep).
We assume without loss of generality that, for every variable x P Var, there
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exists a corresponding name x̄ P Name.

SMem : Var Ñ Ep
L¨MO : C ˆ SMem Ñ List pQ, SMemq

L¨Mcmd
O : C ˆ SMem Ñ SMem

Lc1; c2MO fi λσ. Lc2MOpLc1Mcmd
O pσqq

Lc1 || c2MO fi λσ. split pLc1MOpσq :: Lc2MOpσqq
LendMO fi λσ. rp1, σqs

LxÐ$ FMcmd
O fi λσ. σrx ÞÑ x̄s

LxÐ qpF, b, i, eqMcmd
O fi λσ. σrx ÞÑ OpF, b, i, σpeqqs

Lx :“ eMcmd
O fi λσ. σrx ÞÑ σpeqs

By LcMO we denote the semantics of the distinguisher's computation c in the
presence of the oracles O “ pO1,O2q. Both, O1,O2 are stateful machines that
take on input queries of the form pF, b, i, eq and output symbolic expressions
from Ep. Function �split� takes a list of pairs pQ, SMemq and divides the �rst
component of every pair by 2. More formally, split fi map pλpw, σq. pw{2, σqq.

De�nition 41 (Symbolically satisfying systems of constraints). Given a system
of constraints E “ pE“, E‰q and given a map σ : Var Ñ Ep, we say that σ
symbolically satis�es E in theory T (denoted by σ |ùT E) if

‚ for every pe1, e2q P E“ s.t. varspe1, e2q Ď dompσq, it holds σpe1q “T σpe2q,

‚ for every ppe1, pe2q in E‰ s.t. varsppe1, pe2q Ď dompσq, it holds σppe1q ‰T σppe2q.

We de�ne now the symbolic semantics of a distinguisher pc, Eq in the pres-
ence of a symbolic oracle O, which is a rational number in r0, 1s. Roughly,
it represents the accumulated probability weight of the branches in c (due to
probabilistic choices ||) in which system E is symbolically satis�ed.

De�nition 42 (Symbolic semantics of distinguishers). We de�ne the symbolic
semantics of distinguisher pc, Eq in the presence of the symbolic oracle O, de-
noted as Lc, EMO as the rational number computed as:

ÿ

pw,σqPLcMO
s.t. σ|ùT E

w .
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6.4.2 Universal symbolic distinguishers

In this section we formally de�ne the notion of universal symbolic distinguish-
ers. Because no probabilities or group elements events are involved, but formal
symbolic expressions, checking that a distinguisher is actually a universal sym-
bolic distinguisher can be easily done (we refer to Section 6.5 for details). And
thanks to Theorem 19, we can extend the absence of symbolic attacks to the
absence of probabilistic attacks.

De�nition 43 (Universal symbolic distinguisher). A universal symbolic distin-
guisher is a pair pc, Eq of a computation and an event (a system of constraints)
such that, for every symbolic simulator S,

|Lc, EMC,F ´ Lc, EMR,S | ą 0 .

The main theorem we want to show is the following.

Theorem 19. A pair pc, Eq is a universal probabilistic distinguisher if, and
only if, it is a universal symbolic distinguisher.

Sketch. The Theorem follows straightforwardly from the following lemmas (Lem-
mas 10 and 11) by the triangle inequality and the observation that the di�erence
|Lc, EMC,F ´ Lc, EMR,S | is always a signi�cant amount (non-negligible) when it is
strictly greater than 0 (a constant, actually, because the sizes of c and E are
independent of the security parameter). It is also important to note that sim-
ulators are not restricted in power, except for the number of queries to their
random oracles, which is translated into a polynomial number of function sym-
bols in their symbolic answers. That forces ` (from Lemma 11) to be polynomial
in the security parameter and therefore (because d from both lemmas is con-
stant), the bounds given by Lemmas 10 and 11 are negligible in the security
parameter. l

Lemma 10. For every distinguisher pc, Eq making d oracle calls,

ˇ

ˇ

ˇ
PrrmÐ JcK

rC, rF : m |ù Es ´ Lc, EMC,F
ˇ

ˇ

ˇ
ď |E|

d3 ` 27

|G|
.

Lemma 11. For every distinguisher pc, Eq (making d oracle calls), for every
symbolic simulator S (making ` queries to its oracles),

ˇ

ˇ

ˇ
PrrmÐ JcK

rR, rS : m |ù Es ´ Lc, EMR,S
ˇ

ˇ

ˇ
ď |E|

pd``q3 ` 27

|G|
.
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Sketch of proof of Lemmas 10 and 11. The proof follows from the observation
that the following two experiments are equivalent

σ Ð JcK
rO : σ |ù E ” σ1 Ð LcMO : pλx. pinstG ˝ σ

1
qxq |ù E

combined with our Master Theorem (Theorem 20), that provides a bound on the
probability of instG making two (non-equivalent under T ) symbolic expressions
evaluate to the same group element. l

6.4.3 Master Theorem

The fact that the symbolic model is purely deterministic simpli�es the analysis
of the security experiments expressed in it. However, as it has been done in other
works about symbolic reasoning in cryptography [17, 18, 43, 63, 156, 160, 182],
it is required to provide an evidence of the fact that the symbolic model is not
far from the real model, in which instead of symbols there are group elements
and probability events. The usual approach of doing so is to provide a Master
Theorem that guarantees that, for the chosen symbolic theory, the conclusions
derived in the symbolic model can be lifted to the probabilistic model.

Roughly, our Master Theorem can be interpreted as the fact that if two
symbolic expressions do not unify in theory T , the probability that they evaluate
to the same group element through procedure instG is negligible.

Theorem 20 (Master Theorem). Let G be a group of characteristic p and let e
be a ground expression from grammar Ep, containing at most d function symbols
and such that e ‰T 0. It holds,

Pr rinstGpeq “G 0Gs ď
d3 ` 27

|G|

where the probability is taken over the coins inside procedure instG and 0G rep-
resents the identity element of G.

Proof. See Section 6.7. l

Note that we do not apply our Master Theorem directly, but we use it to
prove our Theorem 19 (see Lemmas 10 and 11), which is a more explicit state-
ment about the relationship between symbolic and probabilistic experiments.

6.5 Analyzing the universality of distinguishers

Given the description pc, Eq of a distinguisher, our goal is to show that every
possible simulator fails in simulating the real world for the distinguisher (see
De�nitions 33 and 34).
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To do so, we will show that pc, Eq is a universal symbolic distinguisher and
we will apply Theorem 19 to reach our goal. In this section we will show how
proving that a pair pc, Eq is a universal symbolic distinguisher is equivalent to
showing that a system of equations has no solution. Arguing the absence of
solutions of such a system is done by leveraging techniques from uni�cation
theory (such as uni�cation modulo theory, deductibility, static equivalence, etc).

6.5.1 Basic de�nitions

We consider the grammar from Figure 6.6, where Name is a set of names, Var
is a set of variables and Fun is a set of function symbols, with a special subset
InvFun Ď Fun. We de�ne by termspName,Var,Funq the set of terms over Name,
Var and Fun, i.e., the set of expressions from grammar Ep. A substitution σ is
a map from Var to termspName,Var,Funq. Given a term t and a substitution
σ, we denote by σptq (or simply t σ) the term obtained after substituting every
variable x P dompσq in t by the term σpxq.

Our simpli�cation rules from Figure 6.7 induce an equational theory that
we denote by T . In our theory, two terms or expressions e1, e2 are said to be
equivalent under T , denoted by e1 “T e2, if one can be rewritten to the other
by the simpli�cation rules from Figure 6.7. A term or expression is said to be
ground if it contains no variables. A substitution is said to be ground if all the
terms in its image are ground.

De�nition 44 (Uni�cation modulo theory). A �rst-order T -uni�cation prob-
lem Γ “ pΓ“,Γ‰q is a pair of subsets of termspName,Var,FunqˆtermspName,Var,
Funq. A T -uni�er or solution to Γ is a substitution σ such that

‚ for every pe1, e2q P Γ“, e1 σ “T e2 σ, and

‚ for every pe1, e2q P Γ‰, e1 σ ‰T e2 σ.

Example 10. Consider the theory associated to grammar E2, where InvFun “
Fun “ tF u, Name “ ta, bu, Var “ tx, yu. Let the un�cation problem Γ “

pΓ“,Γ‰q be de�ned as

Γ“ “ tpx, F pa, x‘ yqqu Γ‰ “ tpx, aqu .

It admits uni�er σ “ tx ÞÑ b, y ÞÑ b‘ F´1pa, bqu, because x σ “ b and F pa, x‘
yqσ “ F pa, F´1pa, bqq are equivalent under T while x σ “ b and a σ “ a are not
equivalent under T . �
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6.5.2 Deductibility and static equivalence

Deductibility and static equivalence under equational theories are two standard
notions in formal security protocol analysis. Roughly, deductibility tries to
answer to the question of whether certain term can be constructed from a set
of given terms from the theory. This notion is related to computability and has
been used in several occasions for analyzing cryptographic protocols [22, 49, 80,
82], while static equivalence has been applied to the study of indistinguishability
and o�-line guessing attacks [50, 51].

Before de�ning both concepts, we �rst introduce the notion of frame. Frames
are used to organize sequences of terms, representing the knowledge of an algo-
rithm.

De�nition 45 (Frame). A frame is a pair prn, σq, written as ν rn. σ, where rn Ď
Name is a �nite set of names and σ : Var Ñ termspName,Funq is a map from
variables to ground terms.

Intuitively, names in rn are used to represent fresh values generated by third
parties and unavailable to the algorithm, while σ represents the algorithm's
knowledge.

Deductibility. Given a frame φ, representing the available information to an
algorithm, we consider the question of whether a given ground term e can be
deduced from φ in our equational theory T . This concept is expressed by φ $ e
and it is axiomatized by the rules:

ν rn. σ $ c
c R rn

ν rn. σ $ e
if Dx P dompσq : xσ “ e

φ $ e1 φ $ e2

φ $ e1 `p e2

φ $ e

φ $ pe
e “T pe

0

φ $ e1 . . . φ $ e`

φ $ F b
i pe1, . . . , e`q

F P Fun, i P N, b P t´1,`1u

Roughly, deductible terms from φ “ ν rn. σ are those formed by the names that
are not forbidden by φ, the terms that appear in the image of σ, and all terms
that can be built from those by application of function symbols `p and Fun.
This notion captures the notion of algebraic operations (see Section 6.2.4). As
is common in the literature [23], we will use a characterization of the notion of
deductibility.

156



6.5. Analyzing the universality of distinguishers

De�nition 46 (Deductibility). Let e be a ground expression and let ν rn. σ be
a frame. We have ν rn. σ $ e if, and only if, there exists an expression ρ with
namespρq X rn “ H and such that ρ σ “T e.

Such a term ρ is called a recipe for e. The deductibility problem consists of,
given a frame φ and an expression e, deciding whether φ $ e.

Example 11. Consider our equational theory for p “ 2 and let Name “

ta, b, d, cu, Var “ tx1, x2, x3u, InvFun “ Fun “ tF u with F : G2 Ñ G. Con-
sider expression e “ F pa, bq ‘ c and the frame φ “ ν rn. σ with

rn “ ta, c, du

σ “ tx1 ÞÑ c‘ d, x2 ÞÑ a‘ c‘ d, x3 ÞÑ F pa, dqu .

It turns out that e is deductible from φ. A possible recipe could be the following
ρ “ x1 ‘ F px1 ‘ x2, bq ‘ F

´1px1 ‘ x2, x3q. �

Static equivalence. Static equivalence tries to capture the notion of two
frames being indistinguishable from one another. Note that deductibility is not
enough for expressing such a property, because sometimes even when the two
frames induce the same set of deductible terms, it is still possible to di�erence
between them, e.g., there may exist equations that would be satis�ed in one
frame but not in the other.

De�nition 47 (Equality modulo a frame). Let φ “ ν rn. σ be a frame. We
say that expressions e, pe are equal in the frame φ under theory T , denoted by
pe “T peqφ if pnamespeq Y namesppeqq X rn “ H and e σ “T pe σ.

The notion of static equivalence is de�ned in terms of the equality modulo a
frame. Intuitively, two frames are statically equivalent if whenever two expres-
sions are equal modulo one of the frames, they are also equivalent modulo the
other frame.

De�nition 48 (Static equivalence). We say that frames φ1 “ ν rn1. σ1 and
φ2 “ ν rn2. σ2 are statically equivalent with respect to theory T , denoted by
φ1 «T φ2 (or simply φ1 « φ2) if dompσ1q “ dompσ2q and for every pair e, pe of
expressions we have

pe “T peqφ1 ô pe “T peqφ2 .

Example 12. Consider our equational theory for p “ 2 and let Name “ ta, bu,
Var “ tx1, x2, x3u, InvFun “ Fun “ tF u with F : G2 Ñ G. Consider the frames
φ1 “ ν rn. σ1, φ2 “ ν rn. σ2 where

rn “ ta, bu

σ1 “ tx1 ÞÑ F pa, bq, x2 ÞÑ F pb, aq, x3 ÞÑ au

σ2 “ tx1 ÞÑ F pa, bq, x2 ÞÑ F pb, aq, x3 ÞÑ bu .
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Frames φ1 and φ2 are not statically equivalent. Observe that, if we take ex-
pressions e “ x3 ‘ F´1pF´1px3, x1q, x2q and pe “ 0 we have pe “T peqφ1 but not
pe “T peqφ2. �

6.5.3 Deducibility constraints

Deducibility constraints play an essential role for the symbolic analysis of secu-
rity protocols. Roughly, a deducibility constraint is a problem in which a set of
(possibly non-ground) terms and a target term, decide whether there exists a
substitution that makes the target term deducible from the given terms. More
formally,

De�nition 49 (Deducibility constraint). Let e1, . . . , e` be a list of expressions
and let u be an expression. Let rn be the set of names appearing in e1, . . . , e`, u
and let x1, . . . , x` be a list of variables that do not appear in e1, . . . , e`, u. The
deductibility constraint denoted by e1, . . . , e` |ù u is the problem of deciding
whether there exists a ground substitution ρ such that

ν n. tx1 ÞÑ e1 ρ, . . . , x` ÞÑ e` ρu $ u ρ .

If such a ρ exists, it is called the solution of the deductibility constraint. A
deducibility constraints system is a �nite conjunction of deducibility constraints.

Example 13. Consider our equational theory for p “ 2 and let Name “ ta, b, cu,
Var “ ty, x1, x2u, InvFun “ Fun “ tF u with F : G2 Ñ G. Consider the
expressions e1 “ F pb‘ y, aq, e2 “ b‘ c and u “ a. The problem e1, e2 |ù u has
two solutions: ty ÞÑ bu and ty ÞÑ cu, because

ν ta, b, cu . tx1 ÞÑ F p0, aq, x2 ÞÑ b‘ cu $ a for ρ “ F´1
p0, x1q and

ν ta, b, cu . tx1 ÞÑ F pc‘ b, aq, x2 ÞÑ b‘ cu $ a for ρ “ F´1
px2, x1q .

�

6.5.4 From distinguishers to systems of constraints

In this section, we present a method for analyzing whether a distinguisher pc, Eq
represents a universal symbolic attack, by checking whether a system of sym-
bolic constraints has a solution.

Without loss of generality, we will focus on distinguishers pc, Eq that are
not �fool � in the sense that all the equations in the event E are symbolically
satis�ed in the real world. Note that a fool distinguisher can be converted into
a non-fool one by moving the unsatis�ed equations from E“ to E‰ and vice
versa. Also note that if a distinguisher pc, Eq is non-fool, it holds:

Lc, EMC,F “ 1
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and therefore, any simulator S that tries to prevent pc, Eq from being a symbolic
attack, must respond to the queries in such a way that Lc, EMR,S “ 1, i.e., all the
equations in E must be symbolically satis�ed. Equivalently, if for all symbolic
simulators, it is impossible to symbolically satisfy all the equations in E, we
have Lc, EMR,S ă 1, and thus, pc, Eq is a universal symbolic distinguisher.

Note that, in order to show that pc, Eq is an attack for all possible simulators,
we can consider a simulator who knows the distinguisher's strategy, who has
the distinguisher's code hard-wired.

6.5.4.1 Non-branching distinguishers

We say a distinguisher pc, Eq is non-branching if computation c does not include
the symbol ||. Note that non-branching symbolic distinguishers are completely
deterministic, while branching distinguishers are not.

If the simulator knows the distinguisher's code and the distinguisher pc, Eq
is non-branching, without loss of generality we can see the simulator as a deter-
ministic machine that on input a frame φ returns a symbolic expression e, with
φ $ e. The simulator's answers must be such that at the end of computation
c, all the equations from E are satis�ed. In this way, every distinguisher pc, Eq
can be translated into a system of constraints pΓ,Υq, where Γ “ pΓ“,Γ‰q is a
uni�cation problem on variables tα1, . . . , α`u and Υ “ te1 |ù α1, . . . , e` |ù α`u
is a deducibility constraints system. A solution to the system is a substitu-
tion σ that is both a solution to problem Γ and a solution to the deducibility
constraints system Υ.

In Figure 6.9 we formally describe how to obtain this system of equations
from the distinguisher's description pc, Eq. We assume that, for every variable
x P Var there exists a corresponding name x̄ P Name and Var is a proce-
dure that on every call returns a fresh variable. Type SMem corresponds to
the symbolic memory used to de�ne the symbolic semantics of distinguishers,
SMem : Var Ñ Ep. Type K is a list of expressions (Ep list), while type DC stands
for deductibility constraints system. Procedure transσ,Υ computes a symbolic
memory together with a system of deducibility constraints. Roughly, every
query to the simulator's oracle produces a fresh variable that is added to the
system in form of deducibility constraint, i.e., the value that this variable can
take must be computed from the current knowledge of expressions (that is cap-
tured by K). The system of constraints pΓ,Υq associated to distinguisher pc, Eq
is built as follows:

pσ,Υq Ð transH,HpcqpH,Hq; Γ “ pσpE“q, σpE‰qq; returnpΓ,Υq .

Example 14. Let c be the computation induced by the program associated to
Daisy from Figure 6.3, where the distinguishing event is E“ “ tpy, x1 ‘ f2qu,
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transσ,Υp¨q : C ˆ KÑ pSMem, DCq

transcmd
Υ p¨q : C ˆ pSMem, Kq Ñ pSMem, K,DCq

transσ,Υpc1; c2q fi λt. trans
pσ,pΥ
pc2qpptq, where ppσ, pt, pΥq “ transcmd

Υ pc1qptq

transσ,Υpc1 || c2q fi λt. transσ,Υpc1qptq \ transσ,Υpc2qptq

transσ,Υpendq fi λt. pσ,Υq

transcmd
Υ pxÐ$ Fq fi λpσ, tq. pσrx ÞÑ x̄s, t,Υq

transcmd
Υ pxÐ qpF, b, i, eqq fi λpσ, tq. pσrx ÞÑ ys, t :: eq,ΥYtt :: e |ù yuq , y Ð Var

transcmd
Υ px :“ eq fi λpσ, tq. pσrx ÞÑ σpeqs, t,Υq

Figure 6.9: Translation from distinguisher's description to system of constraints.
Where \ is de�ned as pσ1,Υ1q \ pσ2,Υ2q fi pσ1 Y σ2, Υ1 YΥ2q.

E‰ “ H. After running procedure trans we would obtain pσ,Υq, being

σ “
 

x1 ÞÑ x̄1, x2 ÞÑ x̄2, f1 ÞÑ α1, f2 ÞÑ α2,

x0 ÞÑ α1 ‘ x̄2, y ÞÑ R1pα1 ‘ x̄2, x̄1q, y
1
ÞÑ R2pα1 ‘ x̄2, x̄1q

(

Υ “
 

x̄1 |ù α1, x̄1, x̄2 |ù α2

(

where x̄1, x̄2 P Name, α1, α2 P Var, R P InvFun. The uni�cation problem Γ “
pΓ“,Γ‰q is obtained after applying σ to E, that is

Γ“ “ tpR1pα1 ‘ x̄2, x̄1q, x̄1 ‘ α2qu Γ‰ “ H .

Observe that the system of constraints pΓ,Υq derived from Daisy admits a so-
lution, namely, the uni�er

 

α1 ÞÑ r, α2 ÞÑ x̄1 ‘R1pr ‘ x̄2, x̄1q
(

, where r is a
fresh name. The existence of a solution implies that Daisy is not a universal
distinguisher. �

6.5.4.2 Branching distinguishers

In our grammar for distinguishers (see Figure 6.8) we allow probabilistic choices,
syntactically denoted by c1 || c2, and interpreted as a coin will be tossed and
depending on the outcome either c1 or c2 will be executed. Such a branching in
the program can be extremely useful as evidenced by actual attacks from the
literature, like the attack to the 4-rounds iterated Even Mansour cipher from
[90], in which branching plays an essential role. Intuitively, branching is helpful
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Computation:

1 x0 Ð$ t0, 1u
n

2 x1 Ð$ t0, 1u
n

3 x11 Ð$ t0, 1u
n

4 f1 Ð qpF1, x1q

5 f 11 Ð qpF1, x
1
1q

6 x2 :“ x0 ‘ f1

7 x12 :“ x0 ‘ f
1
1

8 f2 Ð qpF2, x2q || f
1
2 Ð qpF2, x

1
2q

Distinguishing events:

R1px0, x1q “ x1 ‘ f2

R1px0, x
1
1q “ x11 ‘ f

1
2

Figure 6.10: Branching attack on 3-rounds Feistel.

because it creates uncertainty on the simulator's view. Note that, without loss
of generality, we are assuming that the simulator knows the distinguisher's code.
However, if the distinguisher's code makes probabilistic choices, the simulator
might not be able to tell which branch of the code is being executed. The ability
of the simulator for distinguishing between di�erent branches is modelled by
static equivalence.

Example 15. Consider the computation from Figure 6.10 and observe that line
8 contains a probabilistic choice, where the third query to the simulator may be
on value x2 or x12. In this case, the simulator cannot tell the di�erence between
this two branches, because the following two frames are statically equivalent:

ν rn. ty1 ÞÑ x1, y2 ÞÑ x̄11, y3 ÞÑ x̄0‘ f̄1u « ν rn. ty1 ÞÑ x1, y2 ÞÑ x̄11, y3 ÞÑ x̄0‘ f̄
1
1u

where x̄0, x̄1, x̄
1
1, f̄1, f̄

1
1 P Name, y1, y2, y3 P Var and rn “ tx̄0, x̄1, x̄

1
1u. This si-

tuation allows us to further limit the simulator (without loss of generality) by
adding an extra constraint. Observe that the system of constraints pΓ,Υq ob-
tained by our procedure trans is the following:

Γ“ “
 

pR1px̄0, x̄1q, x̄1 ‘ α3q, pR1px̄0, x̄
1
1q, x̄

1
1 ‘ α4q

(

Γ‰ “ H

Υ “
 

x̄1 |ù α1, x̄1, x̄
1
1 |ù α2, x̄1, x̄

1
1, x̄0 ‘ α1 |ù α3, x̄1, x̄

1
1, x̄0 ‘ α2 |ù α4

(

where α1, α2, α3, α4 P Var. Note that the problem pΓ,Υq admits a solution,
namely, the uni�er

 

α1 ÞÑ r, α2 ÞÑ s, α3 ÞÑ x̄1 ‘R1px̄0, x̄1q, α4 ÞÑ x̄11 ‘R1px̄0, x̄
1
1q
(

where r, s P Name are fresh names. However, as we have already advanced, we
could add an extra constraint to the system to capture the simulators inability of
distinguishing between the two branches. The constraint binds variables α3 and
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α4 (corresponding to the third query in either execution) and it imposes that the
production or recipe for α3 must be identical to the one for α4. Observe that
the above uni�er does not satisfy this condition, since the production for α3 is
precisely y1 ‘ R1py3 ‘ r, y1q, while the production for α4 is di�erent, namely,
y2‘R1py3‘s, y2q. It turns out that in this example, no solution to the problem
pΓ,Υq is such that the additional restriction on α3 and α4 is satis�ed. We
conclude that the distinguisher described in Figure 6.10 is universal. �

De�nition 50 (System of simulating constraints). A system of simulating con-
straints is a triple pΓ,Υ,Φq where Γ “ pΓ“,Γ‰q is a uni�cation problem on
variables tα1, . . . , α`u, Υ “ te1 |ù α1, . . . , e` |ù α`u is a deducibility constraints
system and Φ is a set of pairs of variables from tα1, . . . , α`u. A solution to the
system pΓ,Υ,Φq is a substitution σ such that

‚ σ is a solution to the uni�cation problem Γ,

‚ σ is a solution to the deducibility constraints system Υ, and

‚ for every pair of variables pαi, αjq P Φ there exists a single recipe ρ such
that pei σq ρ $ σpαiq and pej σq ρ $ σpαjq.

Given a distinguisher pc, Eq, we denote by branchingpcq the set of branch-
ing constraints that we can safely consider. We do not explicitly de�ne the
procedure of computing branchingpcq, but give an verbal description of it. At
at every probabilistic choice in computation c, and on every query inside the
branches (sequentially) a static equivalence problem is considered. Whenever
the branches result indistinguishable, a new pair of variables (corresponding to
those from the queries that are being compared) is added to Φ. This process
continues until on some query the frames are distinguishable. This idea can be
naturally extended to programs containing multiple probabilistic choices.

Our methods for checking whether a distinguisher pc, Eq is a universal dis-
tinguisher consists of building the system of simulating constraints pΓ,Υ,Φq,
obtained as

pσ,Υq Ð transH,HpcqpH,Hq; Γ “ pσpE“q, σpE‰qq; Φ “ branchingpcq

and checking whether it admits a solution.

6.6 Implementation and automated attacks

We have implemented a general library for indi�erentiability analysis. Our li-
brary allows to solve uni�cation, deductibility and static equivalence problems
in the equational theory we consider, for characteristic p “ 2, (see Figures 6.6
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and 6.7), as well as checking that distinguishers expressed in our grammar (Fig-
ure 6.8) are universal. We also explore automated synthesis of indi�erentiability
attacks by proposing two heuristic methods for attacks search. We evaluate our
methods on actual primitives from the literature.

All the experiments were executed on a 8-core machine with 2.40GHz Intel
Core i7-3630QM CPU and 8GB of RAM. The code is publicly available and
open source4.

6.6.1 Case studies (proving universality of distinguishers)

In this section we present the results of applying our tool to verifying the uni-
versality of given attacks. Table 6.1 summarizes our results. On every attack,
we indicate how much time our tool took to verify that it is universal. Some of
the attacks come from the literature while others correspond to the examples
given in this work and some attacks found with our automated attacks search
(we refer to next section for details). The code of the missing attacks can be
found in Section 6.8.

The �rst block corresponds to attacks for Feistel networks. The �rst entry is
the only one in the table that does not represent an indi�erentiability attack, but
a indistinguishability against chosen-ciphertext attack, namely, the distinguisher
is not allowed to query the round functions on which the network is based, but
it still has access to the main component in both direction. With this example,
we want to illustrate the fact that our tool can be used to verify complex
relations, like the one proposed in [34], which is tedious to corroborate by pen-
and-paper. The second entry corresponds to the analysis of the example given in
Section 6.1.3, while the rest of components in this block correspond to attacks
automatically found with our tool (see Section 6.6.2). Observe that one of them
corresponds to the attack described by Coron et al. in [86].

In the next block, we present two attacks against the iterated Even Mansour,
the �rst corresponds to an attack found automatically with our tool, the sec-
ond corresponds to the attack to the 3-rounds IEM (Iterated Even-Mansour)
from [141], and the third one corresponds to a very recent attack to the 4-
rounds IEM from [91], where the authors show that 5 rounds are su�cient for
indi�erentiability.

In the third block we analyze the universality of known attacks against
the Merkle-Damg̊ard construction (without the pre�x-free encodings) and a
distinguisher for the 2-rounds confusion-di�usion network, where the public
permutation is set (for simplicity) to a swap of blocks. It is future work to
extend the expressivity of our distinguishers in order to capture the more general
setting of CD networks (see Section 6.6.3).

4Source code available at https://github.com/miguel-ambrona/indiff.
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Reference Primitive Attack type Time

Barbosa and Farshim [34] 3-rounds Feistel IND-CCA 0.01 ms
Figure 6.3 (David) 3-rounds Feistel Indi� 0.25 ms
Figure 6.10 3-rounds Feistel Indi� 3.89 ms
Figure 6.16 4-rounds Feistel Indi� 10.7 ms
Coron et al. [86] 5-rounds Feistel Indi� 13.5 ms
Figure 6.17 (new attack) 5-rounds Feistel Indi� 14.2 ms

Figure 6.13 2-rounds IEM Indi� 0.15 ms
Lampe and Seurin [141] 3-rounds IEM Indi� 10.9 ms
Dai et al. [91] 4-rounds IEM Indi� 179 ms

Pre�x attack Merkle-Damg̊ard Indi� 0.06 ms
Dodis et al. [98] 2-rounds Conf-Di�. Indi� 1.17 ms

Figure 6.3 (Daisy) 3-rounds Feistel Indi� m 0.41 ms
Naïve attack 6-rounds Feistel Indi� m 0.39 ms

Table 6.1: Case studies (checking universality of distinguishers).

Finally, we include a fourth block presenting negative examples, examples of
distinguishers that are not universal, in order to further test our tool.

6.6.2 Automated attacks search

In this section we describe our heuristic techniques for the automated search of
distinguishers. Table 6.2 summarizes our results. We consider two heuristics for
fully automated attacks search, these heuristics take as input the description
of a cryptographic primitive and try to �nd a universal distinguisher for it.
Figure 6.11 illustrates the input that our heuristics take.

6.6.2.1 Heuristic 1

This �rst heuristic is based on the idea that it is hard (with a polynomial
number of queries to a random oracle) to �nd values satisfying certain relation,
such that their image by a random oracle satis�es a relation too. If that is the
case, simulators will be able to do very little to make both relations hold, what
can be exploited to derive a distinguishing attack. Roughly, we try to �nd a
non-trivial relation in the structure of the given cryptographic component.

Heuristic 1 �rst de�nes a uni�cation problem. It starts with a set of variables
px1,y1q, . . . , px`,y`q for certain ` P N, where every vector xi or yi has a length
that matches the arity of the main component. The heuristic binds xi with yi for
every i P r`s by adding equations to the problem that model the fact that yi is
the output by the main component on input xi. It then selects two expressions
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(* 4-rounds Feistel *)

search_attack Indiff {

rounds F1,F2,F3,F4.

oracle R (x0,x1) :=

x2 = x0 + F1(x1);

x3 = x1 + F2(x2);

x4 = x2 + F3(x3);

x5 = x3 + F4(x4);

return x4, x5.

oracle R^-1 (x4,x5) :=

x3 = x5 + F4(x4);

x2 = x4 + F3(x3);

x1 = x3 + F2(x2);

x0 = x2 + F1(x1);

return x0, x1.

}.

(* 2-rounds Even-Mansour *)

search_attack Indiff {

rounds P1,P2 invertible.

oracle R (k,x) :=

return P2(P1(x) + k).

oracle R^-1 (k,y) :=

return P1^-1(k + P2^-1(y)).

}.

Figure 6.11: Input �les for the fully automated attack search on 4-rounds Feistel
(on the left) and 2-rounds Iterated Even-Mansour, where the �rst and last round
key additions are omitted6 (on the right).

ϕ1, ϕ2 in the variables that we have mentioned and it solves the uni�cation
problem ϕ1px1, . . . ,x`q “ 0 and ϕ2py1, . . . ,y`q “ 0 together with the equations
corresponding to the bindings. The system must have inequalities to guarantee
that ϕ1 or ϕ2 would not be zero in the random world.

A solution to the described system can potentially lead to a distinguishing
attack. For that, the next step is to decompile such relations into programs, with
the help of the solution that has been found. This may introduce an exponential
blow-up due to potential permutations of sets of instructions, but in practice,
these sets of instructions have dependencies between them and, in general, there
are not so many possibilities. For every possible program decompiled from the
relations, we test with our method from Section 6.5 whether it is a universal
distinguisher.

In this �rst implementation, expressions ϕ1, ϕ2 are selected by considering
all possible expressions of a limited size. In the experiments from Table 6.2 the

6Such additions are irrelevant for indi�erentiability as noticed in [90].
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Description Primitive Attack type Heuristic 1 Heuristic 2

Check tool 2-rounds Feistel IND-CPA 44.1 ms X 0.79 ms X
Check tool 3-rounds Feistel IND-CCA 261 ms X 133 ms X
Figure 6.16 4-rounds Feistel Indi� 20.6 s X ą 100 s m

- 5-rounds Feistel Indi� ą 100 s m ą 100 s m

Figure 6.14 2-rounds pal -Feistel IND-CPA 45.3 ms X 1.8 ms X
Figure 6.15 3-rounds pal -Feistel IND-CCA 201 ms X 4.0 ms X
Figure 6.15 4-rounds pal -Feistel IND-CCA 33.0 s X 7.4 ms X
Figure 6.15 5-rounds pal -Feistel IND-CCA ą 100 s m 20.9 ms X
Figure 6.15 6-rounds pal -Feistel IND-CCA ą 100 s m 43.3 ms X
Figure 6.15 7-rounds pal -Feistel IND-CCA ą 100 s m 165.4 ms X

Figure 6.12 1-round IEM IND-CPA 85.4 ms ˆ 0.46 ms X
Figure 6.13 2-rounds IEM Indi� 739 ms ˆ 9.9 ms X

- 3-rounds IEM Indi� 67.6 s ˆ ą 100 s m

Check tool 2-rounds CD Indi� 134 ms X 17.1 s X

Table 6.2: Results on fully automated attacks search. Symbol X is used when
the algorithm found an attack, ˆ is used when the algorithm terminates without
an attack and m denotes a timeout (the algorithm did not give an answer after
100 seconds). Here, pal -Feistel stands for palindromic Feistel network.

size has been limited to 7, i.e. all symbolic expressions that (when interpreted
as a tree) contain at most 7 leaves.

6.6.2.2 Heuristic 2

This heuristic follows a similar idea, but executes it in a di�erent way. It
basically considers a computation c (see Figure 6.8) that, after being executed,
de�nes a list of symbolic expression. Heuristic 2 solves a linear system on these
expressions trying to get a linear combination of them that is symbolically
equivalent to 0. Every such linear combination de�nes a distinguishing event
that may lead to a universal attack.

Again, in this �rst implementation we brute-force on all possible compu-
tations c of limited size. In our experiments, c is restricted to use at most 4
random samplings and consider equations of size at most 5.

6.6.2.3 Results

Table 6.2 summarizes our experiments on fully automated attacks search. We
want to point out that the heuristics have been de�ned with a general purpose
and do not explicitly exploit the properties of any primitive. All the primitives
from the table have been analyzed with both heuristics. For some primitives
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we provide (in Section 6.8) the description of the attack found. When both
heuristic found an attack, this description correspond to the attack found by
the heuristic that performed better.

It is well-known that palindromic-Feistel constructions are insecure construc-
tions, but we have considered these constructions to further test our heuristics.

An attack that does not require to invoke the round functions is IND-CCA,
while if it only uses the main component in one direction, it is classi�ed as
IND-CPA.

Our new attack on 5-rounds Feistel networks (Figure 6.17) has been found
by feeding our Heuristic 1 with speci�c relations. Namely,

ϕ1 :“ x
p1q
1 ‘ x

p1q
2 ‘ x

p1q
3 ‘ x

p1q
4 and ϕ2 :“ y

p0q
1 ‘ y

p0q
2 ‘ y

p0q
3 ‘ y

p0q
4

where the bindings are Cpxp0qi , x
p1q
i q “ py

p0q
i , y

p1q
i q for every i P t1, 2, 3, 4u.

6.6.3 Concluding remarks

In this work we initiate the study of indi�erentiability from the perspective of
symbolic analysis and automated cryptography. As it has been done in other
frameworks, like the GGM, we provide results that guarantee that the symbolic
conclusions derived about these systems have a meaningful interpretation in the
actual model (without symbols, but concrete implementations of the algebraic
structures).

We describe a general method for testing the universality of distinguishers
in the context of indi�erentiability. This method leverages techniques from
uni�cation theory, such as, uni�cation, deductibility, static equivalence.

We provide an implementation of our methods, by solving such problems in
the theory that we consider. Our implementation approaches these problems
from a combinational point of view, we solve uni�cation, deductibility and static
equivalence in two disjoint theories, namely, the theory of ‘ and the theory of
function symbols with inverses. We then implement a solution for all problems
based on the combination of the individual solutions. Arnaud, Cortier and
Delaune [23] guarantee that the combination is sound and complete. However,
our methods also depend on deductibility constraints, which, as shown by [71],
may be undecidable in some associative-commutative theories, like the one we
considered. We approach the problem by implementing (we refer to our tool for
details) an algorithm for deducibility constraints, but it is future work to prove
that our algorithm is sound and complete.

We also leave for future work to improve on the basic heuristics that we have
presented for fully automated attacks search.
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6.7 Proof of Master Theorem (Theorem 20)

We will prove our Master Theorem in two steps. Very roughly, the �rst step
guarantees that after sampling names uniformly, the expression still does not
unify to zero (it still contains function symbols) except with negligible proba-
bility. In the second step we prove that if it still contains functions symbols, it
will only evaluate to zero with negligible probability.

For the sake of simplicity, the proof provided in this section is for the case
when Fun only contains a function F of arity 1 with an inverse. The general
case (multiple functions, arbitrary arities and general inverses) can be proven
following almost the same argument (with a signi�cant notational overhead).
We also focus on the case of characteristic p “ 2 for simplicity and write ‘
instead of `2 (and without loss of generality, note that all arguments can be
extended for an arbitrary p).

In order to divide the proof in two steps, we de�ne an intermediate gram-
mar for expressions without names and variables, EG, induced by group G of
characteristic p, de�ned as follows:

EG fi | a group element, a P G
| EG ‘EG addition

|F b
pEGq function evaluation, b P t´1,`1u

Grammar EG is equipped with the following set of simpli�cation rules:

px‘ yq‘ z “ x‘ py ‘ zq associativity

x ‘ y “ y ‘x commutativity

x ‘ x “ 0G nilpotence

x ‘ 0G “ x identity

F pF´1
pxqq “ F´1

pF pxqq “ x function inverse

a ‘ b “ a`G b simpli�cation in G, a, b P G

where 0G represents the identity element of G and `G represents the group law
in G. The above grammar and rules de�ne an equational theory that we denote
by TG. We say two expressions e1, e2 are equivalent in such theory, denoted by
e1 “TG e2 if one can be rewritten to the other by the described rewriting rules.

Observe that procedure instG : E2 Ñ G can be splitted in the composition
of two procedures, i.e., instG “ instfG ˝ instnG, where

instnG : E2 Ñ EG and instfG : EG Ñ G .

Roughly, procedure instnG takes a ground expression from grammar E2 and con-
verts names in group elements from G, getting an expression from grammar
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EG. Then, instfG takes an expression from grammar EG and produces a group
element by selecting a random function f from the set of all functions from G
to G and interpreting symbol F as function f .

We divide the proof of Theorem 20 in two helper lemmas (Lemmas 12 and 13).

Lemma 12. Let G be a group of characteristic 2 and let e be a ground expression
from grammar E2, containing at most d function symbols and such that e ‰T 0.
It holds,

Pr rinstnGpeq “TG 0Gs ď
1` d

|G|

where the probability is taken over the coins inside procedure instnG.

Proof. We prove the lemma by induction on d.

‚ If d “ 0, expression e does not contain function symbols, but e ‰T 0
and therefore, it must contain names. When such names take a uniform
value in G, they will be reduced to an expression of EG, which can ac-
tually be simpli�ed (by the simpli�cation in G rule) to a single group
element in G. It is clear that the probability that this element is 0G (that
is instnGpeq “TG 0G) is exactly 1{|G|.

‚ If d ą 0, expression e can be rewritten to an expression of the form:

c1 ‘ . . .‘ ck ‘ F
bipe1q ‘ . . .‘ F

bipe`q

where ` ą 0, ci P Name for i P rks are pair-wise di�erent, bj P t´1,`1u
and ej are expressions of grammar E2 for j P r`s. Note that all expressions
can be rewritten to such a form and let us call the expression homogeneous
when k “ 0, i.e., when all top-level terms contain a function symbol. An
expression without function symbols is said to be homogeneous if it is
equivalent to 0. The notion of homogeneity extends naturally to grammar
EG. Let us consider the following events:

A ” instnGpeq “TG 0G pA ” instnGpc1 ‘ . . .‘ ckq “TG 0G

B ” instnGpeq is hom. pB ” instnGpF
b1pe1q ‘ . . .‘ F

b`pe`qq is hom.

Observe that Prr pBs may not be 1 because there can be cancellations of
the top level function symbol of some terms due to the function inverse
rewriting rule. Also, note that PrrAs ď PrrBs and PrrB | pBs “ Prr pA | pBs,
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therefore,

PrrAs ď PrrBs

“ PrrB | pBsPrr pBs ` PrrB |  pBsPrr pBs

ď Prr pA | pBsPrr pBs ` Prr pBs

ď Prr pAs ` Prr pBs

ď
1` d

|G|
.

There, Prr pAs has been upper-bounded by 1{|G| by a very similar argument
to the one given in the case d “ 0. Additionally, Prr pBs has been upper-
bounded by d{|G|. To see that, for every j P r`s we de�ne the event

Cj ” instnGpF
bjpejqq is not homogeneous

and we de�ne dj as the number of function symbols appearing in ej. Note
that dj ă d for every j P r`s. Also, note that if Cj does not occur, it
is because ej uni�ed to F´bjpaq (for some a P G) after instnG and thus,
Prr Cjs is upper-bounded by the probability of a symbolic expression
(with dj or fewer function symbols) evaluating to 0G after instnG. There-
fore, by the induction hypothesis, PrrCjs ď p1 ` djq{|G|. Also, note that
ř

jPr`s dj “ d´ `. Finally, note that (by the union bound),

Prr pBs ď
ÿ

jPr`s

PrrCjs ď
ÿ

jPr`s

1` dj
|G|

“
ÿ

jPr`s

dj
|G|

loomoon

“pd´`q{|G|

`
ÿ

jPr`s

1

|G|
loomoon

“`{|G|

“
d

|G|
.

l

Before stating the next lemma, observe that any expression e from grammar
EG containing d function symbols can always be rewritten and seen as a tree
with at most d`1 leaves and where all leaves are elements of G. For example,
if G is implemented as the set of 3-bitstrings with the exclusive or operation,
the symbolic expression

F pF p110 ‘ 001q ‘ F p000q ‘ 110 ‘ 111q ‘ 101

can be represented by the following tree:
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We de�ne leavespeq as the set of group elements formed by the leaves of e in
this reduced form, again, |leavespeq| ď d`1.

Lemma 13. Let G be a group of characteristic 2 and let e be an expression from
grammar EG, containing at most d function symbols and such that e ‰TG 0. It
holds,

Pr
“

instfGpeq “G 0G
‰

ď

1
3
d3 ` 5

2
d2 ` 37

6
d

|G|

where the probability is taken over the coins inside procedure instfG.

Proof. We will prove the result by induction in d.

‚ If d “ 0, we have that e “TG a for some a P G di�erent from the identity
0G. In that case, PrrinstfGpeq “G 0Gs “ 0.

‚ If d ą 0, let L be the set of all leaves (in the reduced tree for e) together
with 0G. Now, consider one of the leaves that has a function symbol at
the next level in the tree. Without loss of generality, we can think of this
leaf as the next one evaluated by the procedure instfG, which will choose
uniformly a value v P G for function F on this leaf. Let AL be the event of
v being such that for all a P L, v `G a R L. Now, observe that if AL does
not occur, the expression e will be transformed into an expression pe, that
cannot be further simpli�ed with the rewriting rules from EG. Therefore,
it is guaranteed that pe ‰TG 0G and note that pe contains at most d´1
function symbols. The induction hypothesis gives us that

Pr
“

instfGppeq “G 0G
‰

ď

1
3
pd´1q3 ` 5

2
pd´1q2 ` 37

6
pd´1q

|G|
.

Furthermore, note that |L| “ leavespeq`1 ď d`2 and therefore, the prob-
ability of AL can be upper-bounded by pd`2q2{|G|. We have,

Pr
“

instfGpeq “G 0G
‰

ď

1
3
pd´1q3 ` 5

2
pd´1q2 ` 37

6
pd´1q

|G|
` PrrALs

ď

1
3
pd´1q3 ` 5

2
pd´1q2 ` 37

6
pd´1q

|G|
`
pd`2q2

|G|

“

1
3
d3 ` 5

2
d2 ` 37

6
d

|G|
.

l

We are now ready to provide a proof for our Master Theorem.
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Proof of Theorem 20. Let e be an expression containing at most d function
symbols and such that e ‰T 0. We have,

Pr rinstGpeq “G 0Gs “ Pr
“

pinstfG ˝ instnGqpeq “G 0G
‰

(by Lemma 12) ď Pr
“

pinstfG ˝ instnGqpeq “G 0G
ˇ

ˇ instnG ‰TG 0G
‰

`
1`d

|G|

(by Lemma 13) ď

1
3
d3 ` 5

2
d2 ` 37

6
d

|G|
`

1`d

|G|

ď

1
3
d3 ` 5

2
d2 ` 43

6
d` 1

|G|

ď
d3 ` 27

|G|
.

where the last inequality is due to the fact that 1
3
d3 ` 5

2
d2 ` 43

6
d` 1 ď d3 ` 27

for every value of d P N. l

6.8 Distinguishers mentioned in Section 6.6

In this section we present the distinguishers (automatically found with our
heuristics) that we refer to in the other sections of this chapter.

Computation:

1 aÐ$ t0, 1u
n

2 bÐ$ t0, 1u
n

Distinguishing event:

Cpa, aq ‘ a “ Cpb, bq ‘ b

Figure 6.12: Attack (IND-CPA) on 1-round Iterated Even-Mansour (automati-
cally found with our Heuristic 2).

Computation:

1 bÐ$ t0, 1u
n

2 r1 Ð qpP2,`, 0q
3 r2 Ð qpP1,`, bq

Distinguishing event:

r1 ‘ Cpr2, bq “ 0

Figure 6.13: Attack (Indi�) on 2-rounds Iterated Even-Mansour (automatically
found with our Heuristic 2).
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Computation:

1 aÐ$ t0, 1u
n

2 bÐ$ t0, 1u
n

Distinguishing event:

a‘ b “ C1pa, bq ‘ C1pb, bq

Figure 6.14: Attack (IND-CPA) on 2-rounds palindromic Feistel network (auto-
matically found with our Heuristic 2, for all k ď 7).

Computation:

1 aÐ$ t0, 1u
n

Distinguishing event:

C1pa, aq “ C´1
1 pa, aq

Figure 6.15: Attack (IND-CCA) on k-rounds palindromic Feistel network (auto-
matically found with our Heuristic 2).

Computation:

1 r1 Ð$ t0, 1u
n

2 f1 Ð qpF3, r1q

3 f2 Ð qpF2, f1q

4 f3 Ð qpF1, r1 ‘ f2q

5 f4 Ð qpF2, r1 ‘ f2 ‘ f1q

6 f5 Ð qpF1, r1 ‘ f4q

7 x0 :“ f1 ‘ f5

8 x10 :“ r1 ‘ f1 ‘ f2 ‘ f5

9 x20 :“ r1 ‘ f1 ‘ f2 ‘ f3

10 x1 :“ r1 ‘ f4

11 x11 :“ x1

12 x21 :“ r1 ‘ f2

Distinguishing events:

x0 ‘ x
1
0 ‘ x

2
1 “ 0

C1px0, x1q ‘ C1px
1
0, x

1
1q

‘ C1px
2
0, x

2
1q “ 0

Figure 6.16: Attack on 4-rounds Feistel network (automatically found with our
Heuristic 1).
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Computation:

1 a1 Ð$ t0, 1u
n

2 a2 Ð$ t0, 1u
n

3 a3 Ð$ t0, 1u
n

4 f1 Ð qpF3, a1q

5 f2 Ð qpF3, a2q

6 v :“ f1 ‘ f2 ‘ a3

7 f3 Ð qpF2, a3q

8 f4 Ð qpF2, vq
9 f5 Ð qpF1, f3 ‘ a2q

10 f6 Ð qpF1, f3 ‘ a1q

11 f7 Ð qpF1, f4 ‘ a2q

12 f8 Ð qpF1, f4 ‘ a1q

13 x0 :“ f5 ‘ a3

14 x10 :“ f6 ‘ a3

15 x20 :“ f7 ‘ v
16 x30 :“ f8 ‘ v
17 x1 :“ f3 ‘ a2

18 x11 :“ f3 ‘ a1

19 x21 :“ f4 ‘ a2

20 x31 :“ f4 ‘ a1

Distinguishing events:

x1 ‘ x
1
1 ‘ x

2
1 ‘ x

3
1 “ 0

C1px0, x1q ‘ C1px
1
0, x

1
1q

‘ C1px
2
0, x

2
1q ‘ C1px

3
0 , x

3
1 q “ 0

x1 ‰ x11

x1 ‰ x21

x1 ‰ x31

Figure 6.17: New attack on 5-rounds Feistel found with our tool, which is
structurally di�erent from the attack by Coron et al. [86].
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Amplify, clarify, and punctuate, and let
the viewer draw his or her own conclusion.

Keith Jackson

Computer assistance is an emerging practice in the design and veri�cation
of cryptographic primitives and protocols. However, the line of research in
computer-aided cryptography that focuses on automated analysis is quite re-
cent and fairly unexplored. There exist many open challenges in this topic,
which is lagging behind cryptography research by several years. Recent e�orts
in this �eld successfully apply automated analysis techniques to actual crypto-
graphic primitives, nonetheless, it remains unclear how automated analysis can
be applied to the most recent and advanced constructions.

In this thesis, we present new and relevant results for automated analysis
in cryptography. We develop new techniques and tools to broaden the scope of
computer-aided cryptography, with special emphasis on pairing-based cryptog-
raphy.

On the focus on pairing-based constructions. We note that most of our
techniques are not limited to the bilinear groups paradigm and could be natu-
rally extended to other settings. However, pairing-based cryptography is a very
relevant target, because pairings are often used to build advanced constructions,
such as Attribute-Based Encryption or Structure-Preserving Signatures.

Analysis of Cryptographic Constructions in the GGM. The approach
that we have adopted for automated analysis in Chapter 3 and Chapter 5 is
based on analyzing systems of symbolic constraints. Once a cryptographic
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primitive and its desired security are speci�ed, proving its security is reduced
to deciding whether a system of constraints has a solution or not. Such ap-
proach usually involves di�erent non-deterministic choices, guided by a heuris-
tic. More precisely, analyzing such systems of constraints is commonly done
through simpli�cation rules that allow to transform the systems into simpler
and equivalent ones. These rules do not introduce new solutions to the system
and they do not produce new systems with fewer solutions after its application.
A security proof consists of a sequence of rule application steps that eventu-
ally lead to a �nal state (from which a solution to the system can be found
or no solution exists). Finding the right sequence of rules is a very challeng-
ing problem for automation and the designed heuristics sometimes fall short.
The tools we develop in this thesis never make mistakes (they are proven to be
sound), but can sometimes fail to produce an output (they are not proven to
be complete). A very interesting line of future work is to improve the heuristics
that we propose, increasing the number of schemes that can be analyzed with
our tools.

However, note that most of the problems we focus on (namely, proving
security of constructions in our models) are known to be undecidable. Therefore,
there is no hope to produce complete tools in the most general scenarios. It is
still a very interesting problem for future work to de�ne restricted classes of
primitives or constructions that admit complete methods for analyzing their
security.

On the expressivity of Attribute-Based Encryption. One of the main
challenges on ABE is expressivity: the state-of-the-art constructions do not
achieve a good balance between expressivity and size. Another very challenging
problem is direct revocation (see Section 4.6.1.2), which cannot be satisfactorily
achieved yet. Our results from Chapter 4 give new insights on addressing these
problems, making ABE feasible for real applications. The benchmarks for our
improved predicate encodings (see Figure 4.3) show clear run-time improve-
ments for setup, encryption and key generation and minimal improvements for
decryption. However, the state-of-the-art for Attribute-Based Encryption is still
very far from the performance achieved by other simpler public-key cryptosys-
tems (classic Public-Key Encryption, or the simple Identity-Based Encryption).
Consequently, the study of this important area of cryptography must continue.
We believe our new results open new research directions in this topic.

Analysis of ABE in the Generic Group Model and beyond. On the
practical side, it would be very interesting to develop synthesis techniques for
exploring the space of Rational-Fraction Induced ABE (RFI-ABE). As in our
Chapter 3 or prior works using synthesis [44], it would be interesting to ex-
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plore classes of constructions systematically, using our tool for �nding attacks
and proofs. In order to achieve broader coverage (in other words, minimize
the number of schemes for which the tool times out), we intend to improve the
e�ciency of the tool both for �nding attacks and proofs. Moreover, it would
be desirable to establish mathematical theorems that justify focusing on more
restricted, tractable, classes of constructions (else, the search space far exceeds
current computing capabilities). Beyond ABE, it seems appealing to explore
whether our tool could be used for Structure-Preserving Signatures and, in par-
ticular, to synthesize SPSs based on rational fractions (note that the synthesis
performed in Chapter 3 has been analyzed with our gga8 , which does support
Laurent polynomials in the exponent, but not rational fractions).

On the theoretical side, it would be interesting to prove that RFI-ABE are
selectively secure (De�nition 12) in the standard model, under a strong q-type
hardness assumption.

On our methods for indi�erentiability. We note that the results pre-
sented in Chapter 6 are still work in progress, that has not been submitted for
review yet. Our implemented algorithms for uni�cation, deductibilty and static
equivalence are sound and complete, as guaranteed by the results of Arnaud
et al. [23]. However, our methods for testing the universality of distinguishers
(some times) additionally require analyzing deducibility constraints, for which
we have implemented an algorithm, that we have not proven sound nor com-
plete. Deducibility constraints is a relatively new topic and not much is known
about this problem in associative-commutative theories yet (some works give
su�cient conditions for the decidability of the problem [71], but extra analysis
is required to guarantee that our systems meet such conditions). We leave for
future work proving the validity of our algorithm for deducibility constraints or
designing one that is sound and complete. However, we note that the value of
our work is mainly in our techniques. Our method is sound, but the decidabil-
ity of the problem we consider depends on an algorithm that is still unknown.
Nevertheless, in many cases, unsatis�ablility can be guaranteed by only relying
on uni�cation, deductibilty and static equivalence, for which we have decision
procedures. Furthermore, it is worth noticing that our heuristics lead to actual
valid attacks.

On the implementations. Our implementations reproduce the algorithms
described in this document and are open-source for reproducibility and pub-
lic veri�ability. However, even though we have made a big e�ort for faithfully
implementing our methods, our tools might contain errors. Using formal veri�-
cation for proving that our implementations meet the theoretical description of
our algorithms is a very ambitious and interesting future work direction. Veri-

177



7. Conclusions & Future Work

fying our algorithms would require new approaches, because the nature of our
proof techniques is quite unique.

Nonetheless, our techniques have their own value. Implementations are use-
ful to experiment with our methods and to show that our techniques are feasible
and applicable to actual examples from the literature. Our tools validate our
theoretical results and evidence that they are worth to be explored in more
detail. Furthermore, there is no reason to think that our tools misbehave and,
even if they are not veri�ed, they are still useful to play with them. They can
be used to gain con�dence about the design of certain primitives or to discard
others if attacks were found. Consequently, our tools are not only useful to sup-
port our theoretical results, but can be helpful for building new cryptographic
primitives. Again, a responsible use of our implementations would require an
additional theoretical analysis of the primitives that are discovered with them.

Other research directions. Finally, another very interesting future work is
to relate automated analysis in cryptography to the �eld of Arti�cial Intelligence
(AI). On the one hand, research and new techniques on automated reasoning for
cryptography can lead to new approaches to other problems and applications
of AI. On the other hand, automated analysis in cryptography can bene�t from
existing techniques in the area of AI. In particular, machine learning [175] can
lead to important advances in the framework of automated reasoning for cryp-
tography. We refer to [169] for a survey of the relationship between the �elds
of cryptography and machine learning. Some works explore the application of
AI to cryptanalysis [121, 142], others explore how neural networks [158] can be
used for the design of cryptographic primitives [57, 113]. However, to the best
of our knowledge, the application of AI techniques to the area of automated
proofs in cryptography remains practically unexplored. A very interesting line
of research is to investigate how our heuristics on constraint solving could lever-
age techniques from machine learning such as neural networks or decision trees
[69] to improve their e�ectiveness.

Cryptography is a very natural candidate for testing new AI techniques,
and boosts the research in such an important �eld, which is the imminent and
unavoidable future of our civilization. Who knows whether one day machines
will be able to assist in the creative part of mathematical proofs.
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